- 小数乘小数的教学反思 推荐度:
- 相关推荐
小数乘小数教学反思
身为一位优秀的教师,课堂教学是重要的工作之一,写教学反思可以很好的把我们的教学记录下来,怎样写教学反思才更能起到其作用呢?下面是小编收集整理的小数乘小数教学反思,仅供参考,希望能够帮助到大家。
小数乘小数教学反思1
《小数乘小数》这部分内容对五年级的学生来说有点难度,它主要考察学生的运算能力和细心程度。在上完这节课后,我进行了认真的反思,给我的启发:
1、要处理好怎样点小数点。
我认为书上的例3、例4、例5这3道例题可以统一到一个知识点来教学。在教学时,教师要先让学生回顾整数乘整数的.方法,然后在此基础上,扩展到小数乘小数,把小数也看成是整数,这样每位学生都会做整数乘法,最后,在指导学生在积上应怎样点小数点,这是关键,也是教学难点,要强调整个一道乘法算式中共有几位小数,在积中就点几位小数。其中的道理也要让学生明确,把小数看成整数,是先扩大几倍,最后也要缩小相同的倍数,所以要在积中点几位小数。但在学生实际练习中,我也发现了有一小部分学生小数点仍点错,究其原因,不难发现学生不会数小数点,他们把小数的乘法与加法混淆在一起,因此,教师要对这些学生再复习一下小数加法的方法。这样,每位学生都会点小数点了。
2、在教小数乘法中要结合生活实际创设情境,解决实际问题。
在上例3时,要结合学校的宣传栏,让学生先用米尺去量一量宣传栏的长、宽,再让学生想一想,怎样去配宣传栏上的玻璃,学生马上知道要通过乘法计算来确定玻璃的大小。
这节课设计的意图是力求让学生通过“探索”,自主地发现规律。教师再作适当的指导。
我想我现在的立足点就是在日后的家常课中,一点一滴的拾起,新理念,新课堂,希望自己在不断的反思中一路走好。
小数乘小数教学反思2
小数乘小数的计算方法,教参与教材是这样归纳的,先按照整数乘法计算,看因数一共有同位小数,再从积的右边起数出几位,点上小数点,当位数不够时,要添“0”补足。其实质就是根据积的变化规律而归纳而成的。
首先,通过复习小数乘整数的方法,让学生小结出小数乘整数的方法其实就是利用了积的变化规律,如2.05x4的计算方法,把它们看成整数的乘法计算,然后看2.05有两位小数,积就要点上两位小数。想一想、议一议1.2x0.8那怎么计算呢?
学生掌握了小数乘整数的计算方法后,通过议一议、说一说在小组交流中大多数会利用积的`变化规律进行推导,把1.2x0.8的因数1.2和0.8分别扩大10倍算出积是96,要使积不变,积就要缩小到96的1/100,所以1.2x0.8=0.96.在这个环节,学生初步感知了积的小数数位和因数的小数数位的关系,因数共有几位小数,积就要从右到左点上几位小数。
接下来,我出示两道计算6.7x0.3和0.56x0.04,让学生在利用0.8x1.2所得的方法进行计算,然后排列出0.8x1.2因数一共有位小数,积0.96也是两位小数,6.7x0.3中因数一共有两位小数,积也有两位小数,0.56x0.04因数一共有四位小数,积也有四位小数,从而在这些例子当中让学生进一步感受到了积的因数的小数位数的关系,进而学生很自然的就归纳出,小数乘小数的计算方法,先按照整数乘法计算,看因数一共有同位小数,再从积的右边起数出几位,点上小数点,当位数不够时,要添“0”补足。
在知识的巩固过程中,突出竖式计算的书写格式,强调在计算时简要的说出计算的算理,如计算0.29x0.07时,要求学生不但要按书写格式书写,而且要求学生说出 0.29x0.07,先29x7计算出积,再看因数一共有四位小数,就从积的右边起点上四位小数,位数不够的添“0”补足。
在整节课的学习中,学生开始对学习充满兴趣,积极的思考,运用发现的规律去解决问题,能正确计算小数乘整数,效果还是比较好的!
小数乘小数教学反思3
在学习了旧知小数乘整数的基础上,本课意见通过学生的自主探索与发现解决以下几个数学问题:
1、理解并掌握小数乘小数的计算方法,并能正确计算。
2、在探索计算方法的过程中,培养初步的推理能力及抽象概括能力。
3、进一步体会数学知识之间的内在联系,感受数学探索活动本身的乐趣,增强学好数学的信心。
本节课的教学重在渗透比较的思想,在比较中找出新知旧知的联系,在比较中找到解决问题的策略,在比较中发现小数乘小数算理、归纳计算方法。
1、在求阳台面积与房间面积比较时,进行了知识迁移,让学生比较这两道算式的'异同,以及与小数乘整数的异同,从而得出小数乘小数的计算法则:计算过程按整数乘法计算。因数中一共有几位小数,积就从右往左数几位,点上小数点。
2、求总面积两道算式的比较,引出把整幅图看成一个大的长方形进行计算比较简便。
通过学生的当堂作业反馈发现学生在计算小数乘小数时基本能正确在积中点出相应的数位。少数错因在于乘法计算不过关。因此学生的乘法计算还是要过关。另外,相关的变式练习还是要多多训练。学生的倒退意识不强。比如在给248×35=8.68的因数点小数点时,学生们注重表面现象——积是两位小数,忽视了积末尾隐藏的0,也就是说,实际上积应该是三位小数,只是小数末尾的0划去了。所以,学生在掌握了基本算法之后,教师还要有意识地培养学生的观察与审题能力,有效发现题目的深层意图,避免掉入小陷井。
小数乘小数教学反思4
今天上午经过精心的准备,邀请实习教师走进课堂听课,课题是《小数乘小数》(教案已发),下面谈谈今天教学后的反思。
1、孩子能说的我绝不说。
说是学生思维的外在表现形式,培养学生说的能力也是我们课堂教学应该重点关注的。这节课孩子能说的有课前的复习题:根据乘法算式说出积的小数位数;小数乘整数的计算方法;为什么可以先用整数乘法来计算;归纳小数乘法计算方法;怎样点积里的小数点;在计算的时候要注意些什么;等等这些问题学生都可以说出来,所以我管好自己的嘴巴坚决代替学生说。而我就是在适当的时机提出这些问题引导孩子们说,说得不完整我再请其他孩子来补充说,需要所有孩子都说得时候,我就让他们同桌互说。
2、孩子能做的我绝不做。
例题是小数乘小数,是新知识;但今天这两节课里几乎所有的孩子都能独立进行计算,这个时候我就放手让他们去算,再来说说怎样算的:有的孩子说前面我们学习了小数乘整数,就是先按照整数乘法计算方法来计算,再点小数点,所以在计算小数乘小数的时候,也是先按照整数乘法方法来计算,再点小数点(这类学生是联系旧知解决新问题的);有的孩子说:我先把3.6扩大10倍,再把2.8扩大10倍,然后再把积缩小100倍来想的(这类学生是通过预习来找到解决问题的新方法),总之是解决难点了。
3、培养学生提问意识。带着问题去学习,可以更好的投入到学习中去。这节课我给孩子们提供了提问的空间:解决完房间的面积后,我问:你还能提一个一步计算的乘法问题吗?课的最后,我问:你还能提出比较复杂一点的问题吗?孩子们能根据我的设计提出有解决价值的问题,使得练习有了一定的层次性。
4、渗透比较的思想。
在比较中找出新知与旧知的联系,在比较中找到解决问题的策略,在比较中归纳计算方法。
(1)、例题与复习的比较,从而引出本课教学的重点——小数乘小数;
(2)求阳台面积与求房间面积比较,引出两位小数乘一位小数的新问题,但比较后得知,计算的方法是不变的',进行了知识的迁移,从而得出了小数乘小数的计算方法。
(3)最后求总面积的两道算式的比较,引出把整副图看成一个大的长方形进行计算的这种方法比较简便;求阳台比房间小多少的时候,引出先用房间的长(3.6米)减去阳台的宽(1.15米)来计算比较简便。这里没有要求学生进行计算,但通过比较使所有学生感知到简便的列式方法,为后面的学习埋下伏笔。
5、课堂充满着变数,所以我要跟着变。
(1)今天首先教学的b班,孩子们表现的很不错,我基本上是按着教案中的预设进行教学的。等到了a班,学生思想活跃,原本的一些设计就要跟着他们稍微调整。估算意识的渗透,b班是先估再算,a班是先算在估,这时处理估算的作用就有不同,a班算完了估,渗透了用估算来演算的教学思路;b班就是提高估算能力的一个小环节。
(2)b班比较顺利,就带来了一个好处:时间宽裕,所以有时间将练一练第二题全部上课堂练习本;a班就来不及了,所以我就让他们自己任意选一题做,然后进行讲评。
小数乘小数教学反思5
教学内容:
苏教版国标本五年级数学第86——87页例1、“试一试”、“练一练”、练习十五1——3题。
教学目标:
1、让学生通过主动探索,理解小数乘小数的计算方法,能正确地进行相关的计算。
2、让学生在主动探索的过程中,进一步增强探索数学知识规律的能力。
3、让学生进一步体会知识之间的内在联系,感受数学知识和方法的应用价值,从而激发学习数学的兴趣,提高学好数学的自信心。
教学过程:
一、情景导入,引入新课:
1、课件出示例1小明房间的平面图。
提问:从图中你可以得到哪些信息?想解决什么数学问题?
可以怎样列式?
根据学生的回答,出示以下问题:
(1)房间的面积有多大?
3.6×2.8
(2)阳台的面积有多大?
2.8×1.15
提问:这两道算式和我们以前学过的小数乘法有什么不同?
2、揭示并板书课题:小数乘小数。
二、合作探究,掌握算法。
1、初步探究小数乘小数的计算方法。
(1)估算初步探索:
师:请你先估计一下3.6×2.8的积大约是多少?
小组合作:先把自己的想法说给同桌听,再全班交流。
把3.6和2.8都看作3,3×3=9,面积在9平方米左右。
把3.6看作4,2.8看作3,4×3=12,面积应该比12平方米小一点。
(2)笔算进行探索。
师:通过刚才的估算,我们已经知道了3.62.8的积大概在9的左右。那么实际的结果是多少呢?我们还应该学会计算的方法。通常用列竖式的方法进行计算。
进一步启发:回想一下以前计算小数乘法的方法,我们是否可以先把这两个小数都看作整数来计算,这样你会做吗?
让学生先把这两个小数都看作整数来计算。
讨论:这样后,得到的积是不是原来的积?为什么不是?那主要的变化在哪里?
4人小组讨论,然后全班交流。
学生再阅读课本86页,进一步弄清课本的竖式图示的意思:
原来两个小数都当作整数相当于都乘了10,积是原来的100倍,只要把现在得到的积除以100,就能得到正确的积。
问:正确的结果与我们估算的结果接近吗?能正确估算结果的同学真棒。
2、进一步探究小数乘小数的计算方法。
教学“试一试”
(1)根据刚才你解决问题的方法,你能计算出2.8×1.15的结果吗?你能借87页上的示意图来说一说你的想法吗?
学生独立完成计算后与同桌交流想法。
(2)全班交流。把两个因数都看成整数,相当于这两个因数乘了1000,得到的积就是原来积的1000倍。要使现在的积等于原来的积,只要用3220除于1000。
问:现在的积可以化简吗?结果是多少?
三、概括推理,总结方法。
1、引导学生比较例题与“试一试”的计算过程。
观察例1中的因数和积,你发现了它们之间有什么关系?
再观察“试一试”中的因数和积,你发现了它们之间有什么关系?
你从中得到了什么启发?你能说一说因数与积之间有什么关系吗?
小结:小数乘小数,两个小数一共有几位小数,积里面就有几位小数。
2、引导学生总结小数乘小数的计算方法。
师:现在你能总结出小数乘小数的计算方法了吗?
在小组里交流你的想法。
在全班里交流你的想法。
(!)先按整数乘法算出积是多少。
(2)再看因数中一共有几位小数,就从积的右边起数出几位,点上小数点。
注意结果能化简的要化简。
四、实际练习,内化理解。
1、完成“练一练”第1题。
学生独立练习,小组交流校对。
2、完成“练一练”第2题。
独立练习,指名板演。集体评讲。
五、反思总结,深化提高。
今天我们应用了以前原有的.知识,
通过主动积极的探索,得出了小数乘小数的计算方法。经过这个过程,你有什么体会和收获?还有什么值得探讨的地方?
六、完成书面作业:练习十五1、2、3题。
《小数乘小数》教学反思
说算理在我们计算的教学中是十分重视的。的确,说算理对于学生计算的方法的掌握,逻辑思维能力的培养具有积极的作用。然而搞形式化说理,忽视学生对算理的感悟,则有害而无益,形式化说理,表面上看似乎有理有据,推理严密,但它不是建立在学生对计算过程和方法感悟的基础上进行,因而难以使学生对算理真正内化,难以使学生理解实现对所学知识的“意义建构”。
在现行的教学中,一般是按教材的编排,采取如下方式引导学生理解小数乘法的计算方法。
1、出示算式13.5
×0.5
2、引导学生观察和以前算式有什么不同。
3、讲算理:即13.5→扩大10倍→135
×0.5→扩大10倍→5
67.5→缩小100倍→675
然而教学效果令人十分失望。当我引导完上述的转化过程时,要求学生说说为什么这样计算,大部分学生看着板书也说得清算理。但计算时,根本未按算理去做,尤其是中差生错误百出。课后我做了认真反思,上述推算我是严格按教材设计意图、教案要求,且很有条理去教学的,为什么还是没有真正理解算理呢?那是因为教材的推算过程是为教者和学者提供一种借鉴的思路。在实际教学中不能照搬照抄,更不能把教材的思路用教师所谓的“启发”灌输给学生,否则推算说理就成为了形式。为此,我就尝试了一种自己的教法,引导学生利用已有的知识经验自主探索,在经历感悟的过程中增强对算理和算法的理解。结果按我设计的教学方法学,班级学生不仅计算方法掌握快,算理也说的非常清楚,教学效果十分令人满意。
小数乘小数教学反思6
小数乘法已经进行了两节课,现在讲一下讲完两节课的感受。
整节课还是我主导的多,学生主动发现的少,是我太心急了。工作一年,反而不知道该怎么样讲课了。
小数乘法先让学生回顾了小数乘整数,回顾买3个水杯多少钱?
学生口算3.2×3=9.6。
然后提出问题:爸爸又想买草莓,根据图片你能得到哪些信息?
学生知道单价乘数量就是总价。
列式为9.9×0.4,首先进行估算,需要的钱少于4元。然后进行精确的'竖式计算。这是本节课的重难点。
学生对于计算过程也会理解。
但是,真正在交上来的作业过程中,却漏洞百出,让我的内心甚是惶恐。
作业主要出现的问题是:
1.小数乘小数的竖式出现错误:0参与运算过程当中。
2.竖式当中末尾不划0。
3.小数点直接下拉到竖式中或者计算原理不清楚。
上式中,第一幅图片10.5=2.1×5。
第二幅图片0.86=0.43×0.2,0.43=0.43×1。
第三幅图片10.5=2.1×5,6.3=2.1×3,第一位因数按小数计算,第二位因数分别按整数计算。
4.一种新的计算方法在学生当中出现。懂原理,但是不会写简便形式。
上式中0.0190=0.38×0.05,0.076=0.38×0.2。
该如何纠正学生的错误呢?下面是预设的解决办法。
假设一:学生不懂原理。该如何解决。
具体方法:说过程。
先出示几道错题,让学生感受下混乱的竖式能计算出正确的结果吗?
学生自己解决,老师引导。
小数直接参与到计算过程当中。
假设二:学生已经懂原理,但不会写正确的计算过程。【老师直接指导】
具体方法:课堂上集中解决。写出几种错误形式供学生参考。
多余的计算:000。
计算过程中不得随意改变数的大小。
实施效果:再次对交上来的作业,学生的格式情况良好,除个别学生需要再辅导外,基本上都能写出正确的小数乘法竖式。
小数乘小数教学反思7
小数乘小数的计算方法,教材这样归纳:先按照整数乘法计算,看因数中一共有几位小数,再从积的右起数出几位,点上小数点。在实际教学中,有学生根据前面小数乘整数的计算方法迁移归纳成:看因数中一共有几位小数,积(指未化简的)就是几位小数。这两种说法实际上是一致的,都可从由积的变化规律中得出,因此,本课的重点和难点都应当在于帮助学生发现和掌握因数中小数位数变化引起积中小数位数变化的规律,形成比较简单的确定积的小数点位置的方法。
关键在于适当弱化积的计算过程,突出寻找积的小数位数与因数的小数位数的关系,以保证学生思推的高效性,也免计算时的枯燥无味的感觉。而教法上更多地可以依知识的生长结构近移类推,让学生自主发现、归纳和掌握。
小数乘小数是第一单元的'一个教学重点,它是学生在学习了小数乘整数的基础上进行教学的。我以为这一知识学生已有了一定的基础,只要重点掌握了小数乘法的算理,学起来应该是比较轻松的,可事实大大出乎我的意料。
由于对难点问题——积的小数点的位置处理得不到位,所以在课后练习中,学生出现错误的现象比较多:1.方法上的错误。例如在教学例3(2.4×0.8)时,学生能流利地说出先将两个因数分别乘10.这样积想当于来100,为了使积不变,最后还要将积除以100;但是在计算的过程中,学生不能将算理与方法结合起来,不能正确地解决积的小数点的问题,2.计算上的失误。(1)部分学生在积的末尾有0时,先画去0再点小数点;部分学生在遇到因数是纯小数或因数中间有0时,还要将0再乘一遍。(2)因数的数位较多时,个别学生直接写出得数(如4.8×0.24的竖式下直接写出152,没有计算的过程),做完竖式,不写横式的数等,面对学生出现的这样那样的错误,我不得不重新开始审自已的课堂,审视自已的教学,并对此进行了深刻的反思。
小数乘小数教学反思8
小数乘小数的计算方法,教参与教材是这样归纳的,先按照整数乘法计算,看因数一共有同位小数,再从积的右边起数出几位,点上小数点,当位数不够时,要添“0”补足,《小数乘小数》教学反思。其实质就是根据积的变化规律而归纳而成的。
首先,通过复习小数乘整数的方法,让学生小结出小数乘整数的方法其实就是利用了积的变化规律,如2.05x4的计算方法,把它们看成整数的乘法计算,然后看2.05有两位小数,积就要点上两位小数。想一想、议一议1.2x0.8那怎么计算呢?
学生掌握了小数乘整数的计算方法后,通过议一议、说一说在小组交流中大多数会利用积的变化规律进行推导,把1.2x0.8的因数1.2和0.8分别扩大10倍算出积是96,要使积不变,积就要缩小到96的1/100,所以1.2x0.8=0.96.在这个环节,学生初步感知了积的小数数位和因数的小数数位的关系,因数共有几位小数,积就要从右到左点上几位小数,教学反思《《小数乘小数》教学反思》。
接下来,我出示两道计算6.7x0.3和0.56x0.04,让学生在利用0.8x1.2所得的方法进行计算,然后排列出0.8x1.2因数一共有位小数,积0.96也是两位小数,6.7x0.3中因数一共有两位小数,积也有两位小数,0.56x0.04因数一共有四位小数,积也有四位小数,从而在这些例子当中让学生进一步感受到了积的因数的小数位数的关系,进而学生很自然的就归纳出,小数乘小数的计算方法,先按照整数乘法计算,看因数一共有同位小数,再从积的右边起数出几位,点上小数点,当位数不够时,要添“0”补足。
在知识的'巩固过程中,突出竖式计算的书写格式,强调在计算时简要的说出计算的算理,如计算0.29x0.07时,要求学生不但要按书写格式书写,而且要求学生说出 0.29x0.07,先29x7计算出积,再看因数一共有四位小数,就从积的右边起点上四位小数,位数不够的添“0”补足。
在整节课的学习中,学生开始对学习充满兴趣,积极的思考,运用发现的规律去解决问题,能正确计算小数乘整数,效果还是比较好的!
小数乘小数教学反思9
小数乘小数是整数乘法的发展,是小数乘法教学的重点,也是难点,它是在学生学习了小数乘整数和整数乘整数的基础上进行教学的。本节内容应用转化和对比概括小数乘法的计算方法。即用转化的方法,将小数乘法转化为整数乘法。在转化的过程中,处理积中小数点的位置问题是学习的重点。我以为这一节知识学生已有了一定的基础,只要重点掌握了小数乘法的算理,学起来应该是比较轻松的,可事实的情况大大出乎我的意料。在本节课的课后练习中,我发现学生出现以下错误现象:
1、竖式中的错误:部分学生列竖式时,按照加减法的计算方式对齐小数点的位置列式,显然是对算理没有理解。
2、积的小数位数数不对,体现在两方面:有的孩子把两个因数的小数点也算在小数位数里了,导致积的小数位数总是多两位。
3、还有部分学生在积的末尾有零时,先划去0再根据因数的小数位数点小数点,从而使积的小数位数总是少一位或几位。
4、由于因数中间有0的整数乘法没过关,在小数乘法笔算时也犯同样的错误。
对于学生所出现的这些错误,我对自己的课堂教学进行了深刻的反思:说算理对于学生计算方法的掌握,逻辑思维能力的培养的.确具有积极的作用。然而说算理一定要建立在学生对计算过程和方法感悟的基础上,使学生对算理真正内化,理解实现对所学知识的“意义建构”。教学中准确把握学生的学习状况,学生的学情不一样,接受能力各不相同,基础也不同,要尽量抓住课堂上的四十分钟,多关注后进生对知识的掌握情况。多给他们说话、板演改错题的机会,真正做到因材施教。
给予学生更多的自主探索学习的时间,因为小数乘法计算方法的依据是因数变化与积的变化规律,应该放手让学生通过独立思考或小组合作学习的形式,自己举例子说明积的变化规律,这样获得的积的小数点与因数的小数点的关系才是主动的。在讲算理的同时,重视计算技能的培养,细化类型,使各个层次的学生都能正确的理解和掌握计算的方法,做到既重视教学过程又重视教学结果;既注重新旧知识的联系、讲清算理,又要突出积的变化规律、突出竖式的书写格式、突出因数中小数的位数与积中小数的位数的关系。这样才能切实的提高课堂教学的效率。
小数乘小数教学反思10
《小数乘小数》是五年级上册第一单元的内容。这一内容的教学重点是小数乘法的计算法则;教学难点是小数乘法中积的小数位数和小数点的定位,乘得的积小数位数不够的,要在前面用0补足。
小数乘小数是在学生学习了小数乘整数的基础上进行教学的。我以为这一知识点学生已有了一定的基础,只要重点掌握了小数乘法的算理,学起来应该是比较轻松的,可事实的情况却并不尽如人意。在课后练习中,学生出现错误的现象比较多:1、方法上的错误:例如在教学例3(2.4×0.8)时,学生能流利地说出先将两个因数分别扩大10倍,这样乘得的积就会扩大100倍,为了使积不变,最后还要将积缩小100倍;但是在计算的过程中,部分学生不能将算理与方法结合起来,不能正确地解决积的小数点的问题。还有的学生把小数乘法与小数加法点小数点的方法混淆在一起,或者只看其中一个因数的小数位数。2、计算中关于0的问题;部分学生在积的末尾有零时,先划去0再点小数点;部分学困生在遇到因数是纯小数或因数中间有0时,还要将0再乘一遍。3、计算上的失误:因数的数位较多时,个别学生直接写出得数(如2.15×2.1的竖式下直接写出4.515,没有计算的过程),做完竖式,不写横式的得数等。
面对学生出现的这样那样的错误,使我不得不开始重新审视自己的课堂,审视我的学生,并对此我进行了深刻的反思:本单元不是我想象的那么简单,既要注重新旧知识的联系、讲清算理,又要突出积的变化规律、突出竖式的.书写格式、突出因数中小数的位数与积中小数的位数的关系。为此,我决定从以下几方面加以改进:
1、将学生的错题作为教学资源进行分析、判断,这样的改错效果好于学生改书上的错题。
2、列竖式细化。强调:①小数乘法列竖式时“末位对齐”。②求出积后,数两个因数一共有几位小数,就从积的右边起向左数出同样多的位数点上小数点。③对于计算结果,要先点小数点再划掉积末尾的0。
3、小数加减法与小数乘法的对比练习要加强。
小数乘小数教学反思11
本节课的内容是在学生掌握了小数乘整数的基础上进行教学的。通过对比建立新旧知识间的联系,学生学得比较轻松,正确率也较高。
成功之处:
在知识障碍出引发学生的思考,着力解决当两个因数都是小数时,积怎样处理点小数点。通过复习小数乘整数的内容,让学生进一步明确计算方法,特别是小数点的处理。在新知学习中,着重让学生观察因数的'小数位数与积的小数位数之间有什么关系,从而得出因数中一共有几位小数,就从积的右边数出几位点上小数点。
不足之处:
1.列竖式时出现了点错小数点的现象,有的只关注第一个因数的小数位数,有的只关注第二个因数的小数位数,从而出现了虎头蛇尾的错误频出。
2.计算出错仍是学生计算的拦路虎,该进位不进位,该对齐数位不对齐。
再教设计:
1.加强计算的练习,特别是加强口算题卡的练习,强化口算能力。
2.加强学困生的辅导,在课堂上多关注,多留给他们答题的机会。
小数乘小数教学反思12
《小数乘小数练习课》教学反思在练习中有较多学生把小数乘小数的对齐方式和小数加减法小数点的对齐方式混淆,从而出错。在课堂教学中,我没有很好的抓住小数乘法和小数加法计算的根本。小数加法和小数的乘法最根本的区别就是小数点的位置情况,在开课之前我没能作出预料,可是在学生的做题中,我却发现了好多同学在学完小数乘法的末位对齐后,加减法就忘记了小数点对齐。我想如果我能在课前作好充分的'预设,在课上作好强调,学生的出错率也会降低。经过此单元的教学,我找到了自己在教学中存在的问题,也为我在下一部分的教学提了一个醒,使我越来越认识到:没有精心的备课,就没有高效的课堂。没有了反思,就没有自己的教育信念,永远成不了具有自己鲜明个性的教师。
另外,在教学小数乘小数课本第9页第10题教学反思根据分析课后练习,了解到书第9页第10题,一个非零数乘以一个比1大的数,积比原数大,乘以一个比1小的数积比原数小这一规律很重要,故把这一题作为一个例题要讲解,为了培养学生说的能力,在堂上,让学生细心的观察分析,自己总结出这个规律,在学生基本上能说出这个规律时,展示了几道可利用这一规律比较大小的题目,学生能够一眼看出,从而比较出他们的大小。
小数乘小数教学反思13
昨天我上小数乘小数的时候,学生列竖式问题很大。有的同学在计算小数乘法时,索性去掉小数点列成整数竖式,而后直接利用积的.变化规律在横式上点上几位小数。也有的学生受小数加减法影响,喜欢把小数点对齐,而不是末尾对齐。可他们的答案也正确。照教材要求小数乘法要先按整数乘法的方法进行计算,自然竖式也要象整数乘法的竖式一样,末尾对齐。我在《小学数学教学》这个杂志上,也曾经看到一篇文章说:学生在乘数是多位数的乘法竖式中,有的学生是用上面因数每一位分别去乘下面因数各个数位上的数,这样竖式也是合理性。那么我在想小数乘法中是否也允许他这样写呢。竖式本来就是为了计算方便,学生觉得小数点对齐,看起来也很整齐很清楚,那为什么一定要他把竖式写成末位对齐呢?
昨天我在小学数学教学论坛上发了这个帖子,版主说:我想是不可以吧。可也不说为什么一定不可以。虽然心里还是疑惑着,但还是尽量让学生规范写竖式。
今天我把几个怎么教也要写错的同学,让他们把数位多的数写在上面,数位少的写在下面,Z这样一说竖式也正确了,计算正确率也提高了。
小数乘小数教学反思14
小数乘小数的计算方法,教参与教材是这样归纳的,先按照整数乘法计算,看因数一共有同位小数,再从积的右边起数出几位,点上小数点,当位数不够时,要添“0”补足。而在实际的教学当中,有大部分的学生根据前面的小数乘整数的计算方法迁移归纳出以下的内容:看因数一共有几位小数,积就是几位小数。其实这两种方法都是一致的,其实质就是根据积的变化规律而归纳面成的。因而我本课的重点分为以下三点进行。
一、知识的迁移过程。
通过复习小数乘整数的方法,让学生小结出小数乘整数的方法其实就是利用了积的变化规律,如2.05*4的计算方法,把它们看成整数的.乘法计算,然后看2.05有两位小数,积就要点上两位小数。想一想、议一议1.2*0.8那怎么计算呢?
学生掌握了小数乘整数的计算方法后,通过议一议、说一说在小组交流中大多数会利用积的变化规律进行推导,把1.2*0.8的因数1.2和0.8分别扩大10倍算出积是96,要使积不变,积就要缩小到96的1/100,所以1.2*0.8=0.96.在这个环节,学生初步感知了积的小数数位和因数的小数数位的关系,因数共有几位小数,积就要从右到左点上几位小数。
二、知识的归纲过程
我们知道,当一个知识点刚刚有一个兴奋的苗头的时候,教师如果就顺着这个苗头直接就说出结果的话,那效果可能不明显,因为这个时候学生还没有把概念真正形成,因为他们只是通过一道0.8*1.2得出一个较为浅显的表象,因而我这里是这样处理这个环节的,我不急着去归纳,而是出示两道计算6.7*0.3和0.56*0.04,让学生在利用0.8*1.2所得的方法进行计算,然后排列出0.8*1.2因数一共有位小数,积0.96也是两位小数,6.7*0.3中因数一共有两位小数,积也有两位小数,0.56*0.04因数一共有四位小数,积也有四位小数,从而在这些例子当中让学生进一步感受到了积的因数的小数位数的关系,进而学生很自然的就归纳出,小数乘小数的计算方法,先按照整数乘法计算,看因数一共有同位小数,再从积的右边起数出几位,点上小数点,当位数不够时,要添“0”补足。
三、知识的巩固过程
1、突出竖式计算的书写格式,强调在计算时简要的说出计算的算理,如计算0.29*0.07时,要求学生不但要按书写格式书写,而且要求学生说出0.29*0.07,先29*7计算出积,再看因数一共有四位小数,就从积的右边起点上四位小数,位数不够的添“0”补足。
2、突出口算为小数乘法简便运算打基础。
如在课堂上布置了0.25*4、0.125*0.8、0.25*40、12.5*8、1。25*8等多种常用的、常见的口算,这样不但进一步加深了小数乘小数的计算方法,而且为小数乘法的简便运算作了一个很好的铺垫。
在整节课的学习中,学生开始对学习充满兴趣,积极的思考,运用发现的规律去解决问题,能正确计算小数乘小数,效果还是比较好的!
小数乘小数教学反思15
由于本人执教苏教版国标本五年级,其中的一篇教学实录给我很大启示,并按照此教学思路在我班进行了尝试,效果很好。下面是我结合范本和自己的教学实践整理的资料,供大家参考和交流。
一、深刻把握教学内容,指导教学设计。
小数乘小数的计算方法,教材中是这样归纳的,先按照整数乘法计算,看因数中一共有几位小数,再从积的右边起数出几位,点上小数点。在实际教学中,还有学生根据前面的小数乘整数的计算方法迁移归纳成,看因数中一共有几位小数,积(指未化简的)就是几位小数。
因此,本课的重点和难点都应当在于帮助学生发现和掌握因数中小数位数变化引起积中小数位数变化的规律,形成比较简单的确定积的小数点的方法。而教法上更多的依赖旧知识的迁移类推,让学生自主发现和归纳。
二、创设有效的问题情境,促进算理形成。
1.创设什么情境?
《义务教育数学课程标准(实验稿)》提出“让学生在生动具体的情境中学习数学”。我们知道,数学的来源,一是来自数学外部现实社会的发展需要;二是来自数学内部的矛盾,即数学本身发展的需要。从这个角度出发,数学情境可以分为两种:生活情境,从生活中引入数学;问题情境,从数学知识本身的生长结构出发设置的情境。
所谓“有效“,数学课上的情境创设,应该能为数学知识和技能的学习提供支撑,能为数学思维的生长提供土壤,我们应当根据不同的教学内容,灵活的选择不同的情境。
苏教版教材以计算小明家的房间面积为情境,引出需要学习的小数乘小数的计算题,再让学生进行探索尝试。这样,虽然符合从生活中发现数学、应用数学及解决数学问题的要求,但情境本身的设置对于小数乘小数的算理推导过程,并无实质的作用。相反,小数乘小数,与小数乘整数比较,前者需要同时看两个因数一共有几位小数,而后者只有一个因数是小数,计算方法可以类推,算理本质上是一致的,都可以通过积的变化规律加以验证。所以,小数乘整数的计算方法是小数乘小数计算方法的`推导基础,以此知识的生长点作为问题情境是可行的。
因此,本节课我对教材的呈现方式作了调整,首先通过小数乘整数的推理计算,引导学生弄清计算方法。再出示小数乘小数的题目,自主探索。在掌握方法后再去解决实际生活中的一些问题。
2.怎样让问题情境富有“吸引力”?
小数乘小数的最关键的地方是确定积的小数点的位置。适当弱化积的计算过程,重点突出寻找积的小数位数与因数的小数位数的关系,可以保证学生思维的高效性,也避免计算的枯燥无味的感觉。
因此,教学中不能简单的做题目、再总结,做题目、再总结的机械循环。我通过四次反复的出示根据整数乘法的积,,确定小数乘法的积的小数点,每出现一次,都有新的要求,每完成一次,都有新的收获。
【小数乘小数教学反思】相关文章:
小数乘小数的教学反思06-10
小数乘小数教学设计02-20
小数乘小数教学设计09-17
《小数乘整数》教学反思05-23
小数乘小数教学设计13篇04-02
小数乘小数教学设计15篇02-25
小数乘小数教学设计12篇04-10
小数乘小数教学设计大全【15篇】11-23
小数乘整数教学设计02-18