初中数学函数教学反思

时间:2022-01-30 15:24:44 教学反思 我要投稿
  • 相关推荐

初中数学函数教学反思

  作为一名到岗不久的人民教师,课堂教学是我们的任务之一,对学到的教学新方法,我们可以记录在教学反思中,来参考自己需要的教学反思吧!以下是小编为大家收集的初中数学函数教学反思,仅供参考,欢迎大家阅读。

初中数学函数教学反思

初中数学函数教学反思1

  二次函数是初中阶段研究的一个具体、重要的函数,在历年来中考题中都占有较大的分值。二次函数不仅和学生前面学习的一元二次方程有着密切的联系,而且对培养学生“数形结合”的数学思想有着重要的作用。而二次函数的概念是后面学习二次函数的基础,在整个教材体系中起着承上启下的作用。

  本节课的`内容是让学生理解二次函数的概念,会判断一个函数是否是二次函数,并能够用二次函数的一般形式解决实际问题。为此,先让学生复习了函数及一次函数的相关内容,然后设计具体的问题情境让学生自己推导出一个二次函数,并观察、总结它与一次函数的不同,在此基础上逐步归纳出二次函数的一般表达式,最后通过习题巩固二次函数的概念并解决一些简单的数学问题。

  我个人认为,本节课的成功之处是:一是在教学设计上“步步为营”,学生的思维能力“层层提高”。在教学设计上,根据内容的需要,我合理设计具有针对性的问题,借助学生已有的知识展开教学,通过解决问题,充分激发学生的求知欲,调动学生学习的积极性和主动性。

  二是在学习的过程中,不仅注重对学生知识的教授,更注重教给学生学习和思考的方法,提高学生独立发现问题、解决问题的能力,让学生时时体验到成功的快乐。

  三是在整个教学过程中,注重不同层次学生的发展,不同的学生的个体差异,再加上受教学目的等因素的限制,导致一些学有余力的学生会感到吃不饱现象,因此在后面的练习设计中,也有针对性的习题,对这部分学生提高也是很有帮助的。

  不足之处表现在:

  1、由于学生对一次函数的遗忘,因此复习占用的太多的时间,导致课后练习没完成。

  2、学生自学环节,要求不够细致,学生学的不够深入只是看了教材,而未挖掘出教材以外的东西。

  3、由于时间紧张小结的不够完整。

  总之,本节课的教学,虽取得了一些成绩。但也暴露出了许多问题。今后在教学中我一定吸取教训,努力改正自己的不足,提高自己的教学上水平。

初中数学函数教学反思2

  今天我给学生上了锐角三角函数这一章的第一节,现将这节课作简单反思。

  本节课采用问题引入法,从教材探究性问题梯子的倾斜度入手,让学生主动参与学习活动。用特殊值探究锐角的三角函数时,学生们表现得非常积极,从作图,找边、角,计算各个方面进行探究,学生发现:特殊角的三角函数值可以用勾股定理求出,然后就问:三角函数与直角三角形的边、角有什么关系,三角函数与三角形的.形状有关系吗?整节课都在紧张而愉快的气氛中进行。学生非常活跃,大部分人都能积极动脑积极参与。教学中,我一直比较关注学生的情感态度,对那些积极动脑,热情参与的同学,都给予了鼓励和表扬,促使学生的情感和兴趣始终保持最佳状态,从而保证施教活动的有效性。

  在今后具体教学过程中,自己还要多注意以下两点:

  (1)还要多下点工夫在如何调动课堂气氛,使语言和教态更加生动上。初中学生的注意力还是比较容易分散的,兴趣也比较容易转移,因此,越是生动形象的语言,越是宽松活泼的气氛,越容易被他们接受。如何找到适合自己适合学生的教学风格?或严谨有序,或生动活泼,或诙谐幽默,或诗情画意,或春风细雨润物细无声,或激情飞扬,每一种都是教学魅力和人格魅力的展现。我将不断摸索,不断实践。

  (2)我将尽我可能站在学生的角度上思考问题,设计好教学的每一个细节,上课前多揣摩。让学生更多地参与到课堂的教学过程中,让学生体验思考的过程,体验成功的喜悦和失败的挫折,舍得把课堂让给学生,让学生做课堂这个小小舞台的主角。而我将尽我最大可能在课堂上投入更多的情感因素,丰富课堂语言,使课堂更加鲜活,充满人性魅力,下课后多反思,做好反馈工作,不断总结得失,不断进步。只有这样,才能真正提高课堂教学效率。

初中数学函数教学反思3

  二次函数是初中阶段的重要知识点,如何让学生学得好,也是困扰我很久的问题。通过画图,在观察图形中总结出图形的性质,对学生来说不是难点。重点和难点在准确灵活地应用性质。但是要想准确应用,熟记图形与性质是前提,于是我重点放在对“性质的记忆”和“对学生高要求上”。

  强化记忆,功夫在平时。每节课上课一开始,我在黑板上板书上节学过的有代表性的函数,为防止出错,开始以小组或者同为相互检查快速说性质:包括图形、对称轴、顶点坐标、增减性、最值六个方面。每节课都将前几节课学过的函数式板书,学生自然形成习惯。直到学习顶点式的一般形式这节课,共出示六个代表性的函数,尽管多,但是在前几节课的基础上,学生已经达到熟练快速准确。我和学生开玩笑说,必须将函数性质记忆到说梦话都说函数性质的地步。

  深化理解,学生对着自己曾经画过函数说性质,不知不觉中将图像和性质有机的`结合在了一起。并逐步的将说具体函数的性质过渡到说一般表达式的函数性质。y=ax2y=ax2+k,y=a(x-h)2+k.

  提高要求。因为手中没有合适的材料供学生练习使用,因此我们每节课印制了两份随堂练习,因为刚学完性质,对学生来说训练题难度不大,开始对学生的要求是最多错一个题,结果发现学生的错误很少,后期发现自己的要求低了,于是我改变要求,必须一个不错方可得A等级。结果发现,学生自然对自己的要求也提高了。当发现自己错一个时,就会反思自己那里没学好。一班的学生平时反映灵活,但是缺少深入细致,必须提高要求,方可让他们耐下心来认真学习。

  同时从学生的答题中,及时发现学生存在的问题,及时提醒学生反思改进。上节课讲过的下次再考照样错,如:李萌。在她的反思中,分析到自己不是智力问题,而是心态和习惯问题,遇到问题不深入细致,导致基础知识的应用出问题。他月考和期中检测均是等级B。“就按这样的习惯学下去,不能考A”“老师,下次我一定考A”我试图在平时的学习中发现她的问题,多么希望她保持好的等级。

初中数学函数教学反思4

  在沈阳抚顺的研讨会上,本人承担了《变量与函数》的教学任务.之前,我分别在本校与广州开发区中学分别上了一堂课.三节课,是一个实践、反思、改进、再实践的过程.经过课题组的点评与讨论,本人对概念课的教学设计与教学实践有了更深入的了解.

  本设计呈现的课堂结构为:

  (1)揭示学习目标;

  (2)引入数学原型;

  (3)抽象出数学现实,逐步达致数学形式化的概念;

  (4)巩固概念练习(概念辨析);

  (5)小结(质疑).

  1、如何揭示学习目标

  概念课的引入要考虑学生关心的如下问题:这节课学什么概念?为什么要学这样的概念?

  数学源于生活而高于生活,数学概念的引入可从生活的需要、数学的需要等方面引入.初中涉及的函数概念的核心是“量与量之间的特殊对应关系”.本课中,本人在导言中提出两个问题:“引例1,《名侦探柯南》中有这样一个情景:柯南根据案发现场的脚印,锁定疑犯的身高.你知道其中的道理吗?”、“引例2.我们班中同学A与职业相扑运动员,谁的饭量大?你能说明理由吗?”学生对上述问题既熟悉又感到意外.问题1涉及两个量的关系,脚印确定,对应的身高有多个取值;问题2涉及多个量的关系.上述问题,不仅仅是引起学生的注意,更重要的是让学生了解客观世界中量与量之间联系的多样性、复杂性,而函数研究的正是量与量之间的各种关系中的`“特殊关系”.数学研究有时从最简单、特殊的情况入手,化繁为简.让学生明确,这一节课我们只研究两个量之间的特殊对应关系.“特殊在什么地方?”学生需带着这样的问题开始这一课的学习.

  函数概念的引入应具有“整体观”,不仅要提供符合函数原型的单值对应的实例,还应提供其他的量与量之间关系的实例(如多个量的对应关系、两个量间的“一对多”关系等),使学生在更广泛的背景中经历筛选、提炼出新的数学知识的过程,逐步领悟“化繁为简”的数学研究方法.当然,这里的问题是作为研究“背景”呈现,教学时应作“虚化”处理,以突出主要内容.

  2、如何选取合适的数学原型

  从数学的“学术形态”看,数学原型所蕴藏的数学素材应与数学概念的内涵相一致;从数学的“教育形态”看,数学原型应真实、简洁、简单.真实指的是基于学生的生活现实、数学现实,它可以是生活中的实例,也可以是学生熟悉的动漫故事、童话故事等.简洁、简单指的是问题的表述应简洁,问题情境的设置要尽可能简单,全体学生对情境中的问题不应存在太大的理解困难,设计的问题情境要能突出将要学习的新知识的本质.

  本设计采用了三个数学原型的问题:问题1,“票房收入与售出票数问题”(可用解析式表示);问题2,成绩登记表中的一次数学测试的“成绩与学号问题”(表格表示);问题3,“气温变化与时间问题”(图象表示).这三个问题从不同层面、不同角度体现函数的“单值对应关系”,也都是学生生活中的真实问题,问题简单易懂,学生容易基于上述生活实例抽象出新的数学概念.

  由于不少学生在理解“弹簧问题”时面临列函数关系式的困难,可能冲淡对函数概念的学习,故本节课没有采用该引例。

  对于繁难的概念,我们更应注重为学生构建学生所熟悉的、简单的数学现实,化繁为简、化抽象为形象.过难、过繁的背景会成为学生学习抽象新概念的拦路虎.

  3、如何引领学生经历数学化、形式化的过程

  “数学教学是数学活动的教学”,面对抽象的数学内容,老师会想方设法创设易于学生理解的数学情境.但如何从具体的实例中提炼出数学的素材、形式化为数学知识是教学的关键环节.从具体情境到数学知识的形式化,需要教师为学生搭建合适的“脚手架”,提出能引发学生思考、过渡到数学形式化的问题.本人在学生完成问题情境的几个问题后,提出系列问题“上述几个问题中,分别涉及哪些量的关系?哪些量的变化会引会另一个量的变化?通过哪一个量可以确定另一个量?”

  在与学生的交流过程中把重点内容板书,板书注重揭示两个量间的关系,引领学生经历数学概念的形成过程,引导学生认识为什么要引进变量、常量.由问题1~3的共性“单值对应关系”与“脚印与身高”问题中反映的“一对多关系”进行对比抽象出函数的概念,逐步了解如何给数学概念下定义,并理解概念的本质特征.

  4、如何引用反例

  学生对概念的理解需要经历一个从模糊到清晰的过程,通过正例与反例的对照,才能准确理解概念的内涵.反例引用的时机、反例的量要恰到好处.过早、过多的反例会干扰学生对概念的准确理解.

  概念生成的前期提供的各种量的关系中的实例提供的是一个更为广泛的背景,让学生经历从各种关系中抽象出“特殊的单值对应关系”,从而体会产生函数概念的背景.这样的引入有利于避免概念教学中“一个定义,三点注意”的倾向.

  在本校上课时,从“气温问题”中的函数图象引导学生发现时间t取定一个值时,所得T的对应值只有一个,学生习惯性地提出问题“温度T取定一个值时,时间t 是否唯一确定?”全体同学从正反两个方面认识“唯一确定”的含义,在这样的基础上再归纳出函数的定义,学生较好地掌握函数中的单值对应关系.

  在广州开发区中学上课时,在概念的形成前期,忙中出漏,没有抓住“气温问题”中的函数图象讲解“唯一确定”,特别是没有从反面(温度T=8,时间t=12~14)帮助学生理解“唯一性”,也没有强化“脚印与身高”反映的“一对多关系”,只在涉及“单值对应关系”的实例基础上引出概念,也跳过后面提到的三个反例,学生在后面的概念辨析练习中错漏较多,为纠正学生的理解花了九牛二虎之力.

  在抚顺上课时,在完成例1、例2的教学后,还用到如下反例:问题2变式“在这次数学测试中,成绩是学号的函数吗?”、问题3变式“北京春季某一天的时间t是气温T的函数吗?”、练习2(3)变式“汽车以60千米/秒的速度匀速行驶,t是s的函数吗?”,学生借助这三个逆向变式,根据生活经验理解“两个量间的对应关系”是否为“单值对应关系”,有利于学生明确“由哪一个量能唯一确定另一个量”,从而更好地理解自变量与函数的关系,更重要的是让学生养成逆向思维的习惯.

初中数学函数教学反思5

  这节课是安排在学了一次函数、反比例、一元二次方程之后的二次函数的第一节课,学习目标是要学生懂得二次函数概念,能分辨二次函数与其他函数的不同,能理解二次函数的一般形式,并能初步理解实际问题中对自变量的取值范围的'限制。依我看,这节课的重点该放在“经历探索和表示二次函数关系的过程,获得用二次函数表示变量之间关系的体验,从而形成定义”上。一上完这节课后就有所感触:

  1、二次函数是一种常见的函数,应用非常广泛,它是客观地反映现实世界中变量之间的数量关系和变化规律的一种非常重要的数学模型。许多实际问题往往可以归结为二次函数加以研究。

  2、教学要重视概念的形成和建构,在概念的学习过程中,从丰富的现实背景和学生感兴趣的问题出发,通过学生之间的合作与交流的探究性活动,引导分析实际问题,如探究面积问题,利息问题、观察表格找规律及用关系式表示这些关系的过程,引出二次函数的概念,使学生感受二次函数与生活的密切联系。

  3、课堂教学要求老师除了深入备好课外,还要懂得根据学生反馈来适时变通,组织学生讨论时该放则放,该收则收,合理使用好课堂45分钟,尽可能把课堂还给学生。

  我觉得在教学中,只光热情还不够,没有积极调动学生的学习热情,感染力不足。今后备课时要重视创设丰富而风趣的语言,来调动学生的积极性。总之,在数学教学中不但要善于设疑置难,激发学生的学习热情,同时要加强学生自学能力的培养,而且要理论联系实际,只有这样,才会吸引学生对数学学科的热爱。

初中数学函数教学反思6

  函数教学是初中数学中的重要部分,也是中考中的热点问题,更是学生感觉有难度的部分,因此,学好函数,关乎学生对数学的兴趣和爱好,我在教学中更加重视函数教学,我的做法如下:

  1、培养学生数形结合思想,提高学生作图能力。

  无论是一次函数,还是反比例函数及二次函数的教学,都离不开画函数图象和理解图象,因此一定要养成让学生观察图象分析问题的能力,只有让学生不断地利用图象,才能更好的'培养学生的数形结合思想,从而让学生体会到借助图象的简洁性,并降低函数的难度。

  2、养成良好的审题习惯,培养学生严密的思维能力。

  在教学中,要不断地要求学生用标记法认真审题,学会注意题中的关键字词,例如函数自变量的要求、字母的取值范围等,学会作标记,在解题中不断提醒自己,防止漏解丢解,从而培养学生严密的思维能力。

  3、带领学生总结解题技巧,培养学生函数思想。

  对学生来说,函数是有难度的,就是因为函数这一部分的解题技巧灵活多样,作为一名教师,应带领学生学会分析问题解决问题,不同的题有不同的方法,在函数部分中,常见的数学方法有直接推理法、画图法、排除法、分类讨论法、字母系数吻合法、最值法、特殊值法、特殊点法等等,这些方法要在不断地解决问题中潜移默化的交给学生,并让学生灵活应用。

  4、培养学生规范解题步骤的能力。

  良好的解题步骤可以理清学生的思维,降低学生的难度,从而更好的解决函数问题。

  5、加强变式练习,培养学生的综合能力。

  函数部分的综合性、灵活性较强,只有不断地加强变式练习,才能使学生正确的分析问题解决问题,从而提高学生的综合能力。

  以上是我的个人见解,数学教学任重而道远,函数教学更是重中之重,我将不断地探索总结教学技能,从而更好的提高自己的业务能力。

初中数学函数教学反思7

  二次函数是学生学习了正比例函数,一次函数和反比例函数以后进一步学习函数知识,是函数知识螺旋发展的一个重要环节,二次函数是描述变量之间关系的重要的数学模型,它既是其他学科研究时所采用的重要方法之一,也是某些简单变量最优化问题的数学模型。和一次函数,反比例函数一样,它也是一种非常基本的初等函数,对二次函数的研究将为学生进一步学习函数,体会函数的思想奠定基础和积累经验。

  本节课的具体内容是让学生理解二次函数的概念,会判断一个函数是否是二次函数,并能够用二次函数的一般形式解决一些问题。为此,我先带领学生复习了什么是一次函数,然后设计具体的问题情境让学生自己“推导”出一个二次函数,并观察、总结它与一次函数有什么不同。在此基础上,逐步归纳出二次函数的一般解析式:y=ax+bx+c(a,b,c是常数,a≠0)。最后,通过随堂练习巩固二次函数的概念并解决一些简单的数学问题。

  我个人以为,本节课的成功之处是:

  教学时,通过实例引入二次函数的概念,让学生明确二次函数是一种常见的函数,应用非常广泛,它是客观地反映现实世界中变量之间的数量关系和变化规律的一种非常重要的数学模型,通过学习求一些简单的实际问题中二次函数的解析式,大部分学生重视了二次函数概念的形成和建构,在概念的'学习过程中,让学生体验从问题出发到列二次函数解析式的过程,体验用函数思想去描述,研究变量之间变化规律的意义。让学生终生受用的思考方法,使学生的思维水平有所提高。这样不仅提高了学生独立发现问题、解决问题的能力,避免学习落入程式化的窠臼,而且也让学生体验到了成功的快乐。

初中数学函数教学反思8

  一、教材分析

  反比例函数是初中阶段所要学习的三种函数中的一种,是一类比较简单但很重要的函数,现实生活中充满了反比例函数的例子。因此反比例函数的概念与意义的教学是基础。

  二、学情分析

  由于之前学习过函数,学生对函数概念已经有了一定的认识能力,另外在前一章我们学习过分式的知识,因此为本节课的教学奠定的一定的基础。

  三、教学目标

  知识目标:理解反比例函数意义;能够根据已知条件确定反比例函数的表达式.

  解决问题:能从实际问题中抽象出反比例函数并确定其表达式. 情感态度:让学生经历从实际问题中抽象出反比例函数模型的过程,体会反比例函数来源于实际.

  四、教学重难点

  重点:理解反比例函数意义,确定反比例函数的表达式.

  难点:反比例函数表达式的`确立.

  五、教学过程

  (1)京沪线铁路全程为1463km,某次列车的平均速度v(单位:km/h)随此次列车的全程运行时间t(单位:h)的变化而变化;

  (2)某住宅小区要种植一个面积1000m2的矩形草坪,草坪的长y(单

  位:m)随宽x(单位:m)的变化而变化。

  请同学们写出上述函数的表达式

  14631000(2)y= tx

  k可知:形如y= (k为常数,k≠0)的函数称为反比例函数,其中xx(1)v=

  是自变量,y是函数。

  此过程的目的在于让学生从实际问题中抽象出反比例函数模型的过程,体会反比例函数来源于实际. 由于是分式,当x=0时,分式无意义,所以x≠0。

  当y= 中k=0时,y=0,函数y是一个常数,通常我们把这样的函数称为常函数。此时y就不是反比例函数了。

  举例:下列属于反比例函数的是

  (1)y= (2)xy=10 (3)y=k-1x (4)y= -

  此过程的目的是通过分析与练习让学生更加了解反比例函数的概念 问已知y与x成反比例,y与x-1成反比例,y+1与x成反比例,y+1与x-1成反比例,将如何设其解析式(函数关系式)

  已知y与x成反比例,则可设y与x的函数关系式为y=

  k x?1

  k已知y+1与x成反比例,则可设y与x的函数关系式为y+1= xkxkxkxkx2x已知y与x-1成反比例,则可设y与x的函数关系式为y=

  已知y+1与x-1成反比例,则可设y与x的函数关系式为y+1= k x?1此过程的目的是为了让学生更深刻的了解反比例函数的概念,为以后在求函数解析式做好铺垫。

  例:已知y与x2反比例,并且当x=3时y=4

  (1)求出y和x之间的函数解析式

  (2)求当x=1.5时y的值

  解析:因为y与x2反比例,所以设y?k,只要将k求出即可得到yx2

  和x之间的函数解析式。之后引导学生书写过程。能从实际问题中抽象出反比例函数并确定其表达式最后学生练习并布置作业

  通过此环节,加深对本节课所内容的认识,以达到巩固的目的。

  六、评价与反思

  本节课是在学生现有的认识基础上进行讲解,便于学生理解反比例函数的概念。而本节课的重点在于理解反比例函数意义,确定反比例函数的表达式.应该对这一方面的内容多练习巩固。

初中数学函数教学反思9

  一、教学目标:

  1、知道一次函数与正比例函数的定义.

  2、理解掌握一次函数的图象的特征和相关的性质;

  3、弄清一次函数与正比例函数的区别与联系.

  4、掌握直线的平移法则简单应用.

  5、能应用本章的基础知识熟练地解决数学问题。

  二、教学重、难点:

  重点:初步构建比较系统的函数知识体系。

  难点:对直线的平移法则的理解,体会数形结合思想。

  三、教学过程:

  1、一次函数与正比例函数的定义:

  一次函数:一般地,若y=kx+b(其中k,b为常数且k≠0),那么y是一次函数

  正比例函数:对于 y=kx+b,当b=0, k≠0时,有y=kx,此时称y是x的正比例函数,k为正比例系数。

  2. 一次函数与正比例函数的.区别与联系:

  (1)从解析式看:y=kx+b(k≠0,b是常数)是一次函数;而y=kx(k≠0,b=0)是正比例函数,显然正比例函数是一次函数的特例,一次函数是正比例函数的推广。

  (2)从图象看:正比例函数y=kx(k≠0)的图象是过原点(0,0)的一条直线;而一次函数y=kx+b(k≠0)的图象是过点(0,b)且与y=kx

  平行的一条直线。

  基础训练:

  1. 写出一个图象经过点(1,- 3)的函数解析式为: 。

  2.直线y = - 2X - 2 不经过第 象限,y随x的增大而。

  3.如果P(2,k)在直线y=2x+2上,那么点P到x轴的距离是:。

  4.已知正比例函数 y =(3k-1)x,,若y随

  x的增大而增大,则k是: 。

  5、过点(0,2)且与直线y=3x平行的直线是: 。

  6、若正比例函数y =(1-2m)x 的图像过点A(x1,y1)和点B(x2,y2)当x1<x2时,y1>y2,则m的取值范围是: 。

  7、若y-2与x-2成正比例,当x=-2时,y=4,则x= 时,y = -4。

  8、直线y=- 5x+b与直线y=x-3都交y轴上同一点,则b的值为 。

  9、已知圆O的半径为1,过点A(2,0)的直线切圆O于点B,交y轴于点C。(1)求线段AB的长。(2)求直线AC的解析式。

  四、教学反思:

  教师认真备课,查阅资料,搜集有针对性的训练题,学生只要课堂上能按照教师的思路去做就很高效了。课堂训练以竞赛的形式进行,似乎有一定的刺激性,但缺少后续的刺激活动,学生没有保持住持久的紧张状态。

  课前先把所有的复习任务都交给学生完成,教师指导学生浏览教材、查阅资料归纳本章的基本概念、基本性质、基本方法,并收集与每个知识点相关的有针对性的问题,也可以自己编题,同时要把每一个问

  题的答案做出来,尽量要一题多解。再由小组长组织小组成员汇编,在汇编过程中要去粗取精。课堂就是以小组为单位学生展示自己的舞台,在这个舞台上学生是主角,在这个舞台上学生可以成果共享,在这个舞台上学生收获着自己的收获。台上他们是主角,台下他们也是主角。

  从另一个角度体会到了减轻学生负担的深刻含义,不单指减少学生课后学习的时间,更重要的是提高学生学习的质量、效率,我的这节课失败之处就是过分的注重了前者,而忽略了实效性。那么在今后的复习课教学中我要多思多想、多问多听(问问老师、听听学生的想法),力求在真正减轻学生负担的基础上打造高效课堂。

【初中数学函数教学反思】相关文章:

数学二次函数教学反思04-22

函数的概念教学反思06-09

《对数函数》教学反思04-17

对数函数教学反思07-02

初中数学教学反思09-25

初中数学教学反思09-14

二次函数教学反思02-13

反比例函数教学反思04-28

初中数学教学设计与反思12-23