初中数学平行四边形教案

时间:2023-07-21 18:02:13 教案 我要投稿
  • 相关推荐

初中数学平行四边形教案

  作为一位杰出的老师,总不可避免地需要编写教案,教案是教学活动的总的组织纲领和行动方案。那么大家知道正规的教案是怎么写的吗?下面是小编为大家整理的初中数学平行四边形教案,希望能够帮助到大家。

初中数学平行四边形教案

初中数学平行四边形教案1

  多边形面积的计算教学内容:(机动1课时)

  1、平行四边形面积的计算(2课时)

  2、三角形面积的计算(2课时)

  3、梯形面积的计算(3课时)

  4、实际测量(1课时)

  5、组合图形的面积(1课时)

  6、整理和复习(2课时)

  教学要求:

  1、使学生在理解的基础上掌握平行四边形、三角形和梯形的面积计算公式,能够计算它的面积。

  2、使学生初步学会使用简单的测量工具测定直线和沿着直线测量指定的距离;了解步测和目测的方法,能够计算常见的规则形状的土地面积。

  教学重点:

  1、引导学生运用转化的方法;在动手操作的基础上掌握三角形、平行四边形和梯形面积的计算公式;能正确地应用各种图形面积的计算公式,求它们的面积和解决有关面积的实际问题。

  2、使学生认识常用的测量工具及其用途;掌握测定直线和沿直线测量指定距离的步骤和方法;初步学会测定直线和沿着直线测量指定的距离;了解步测和目测的方法,初步学会步测和目测。

  3、使学生能够正确计算常见的规则形状的土地面积,并会解决有关土地面积的实际问题。

  教学难点:

  1、使学生知道三角形、平行四边形和梯形面积公式的推导过程;掌握各图形面积的计算公式并能灵活地应用它们解决有关面积的实际问题。

  2、使学生初步掌握用简单的测量工具测定直线和沿着直线,测量指定距离的方法。

  平行四边形面积的计算

  第一课时

  教学内容:

  平行四边形面积的计算(例题和做一做,练习十七第1—3题。)

  教学要求:

  1、使学生理解并掌握平行四边形面积的计算公式,能正确地计算平行四边形的面积。

  2、通过操作,进一步发展学生思维能力。培养学生运用转化的方法解决实际问题的能力发展学生的空间观念。

  3、引导学生运用转化的思想探索规律。教学重点:理解并掌握平行四边形面积的计算公式。

  教学难点:

  理解平行四边形面积计算公式的推导过程。

  教学过程:

  一、激发

  1、提问:怎样计算长方形面积?板书:长方形面积=长×宽

  2、口算出下面各长方形的面积。

  (1)长1.2厘米,宽3厘米。

  (2)长0.5米,宽0.4米。

  3、出示方格纸上画的平行四边形,提问:这是什么图形?什么叫平行四边形?指出它的底和高。

  4、揭题:我们已经学会了长方形面积的计算,平行四边形的面积该怎样计算呢?这节课我们就学习“平行四边形面积的计算(板书课题:平行四边形面积的计算)

  二、尝试

  1、用数方格的方法计算平行四边形面积。

  (1)请大家打开书64页(指名读第2段)。

  (2)指名到投影上数。边数边讲解:我先数……,它是……平方厘米;再数……,它是……平方厘米;两部分合起来是……平方厘米。

  (3)投影出示长方形。提问:数一数,这个长方形的长是多少?宽是多少?怎样计算它的面积。

  (4)观察比较两个图形的关系,提问:你发现了什么?引导学生明确:平行四边形的底和长方形的长,平行四边形的高和长方形的宽分别相等,它们的面积也相等。

  2、通过操作,将平行四边形转化成长方形。

  (1)自由剪、拼,进一步感知。

  ①每个平行四边形只准剪一下,试一试被剪下的两部分能拼成已学过的什么图形?学生自己剪、拼。

  ②互相讨论。提问:你发现了什么规律?通过操作讨论得出:只有沿着平行四边形的高剪开,才能拼成一个我们会计算的图形——长方形。这种剪法最简便。

  (2)揭示转化规律任何一个平行四边形都可以转化成一个长方形,在转化的过程中,怎样按照一定的规律来做呢?(教师边演示边讲述)

  ①沿着平行四边形的高剪下左边的直角三角形。(出示剪刀,闪动被剪掉的部分)。

  ②左手按住右手的梯形,右手抽拉剪下的直角三角形,沿着底边慢慢向右移动,直到两斜边重合为止。这样就得到一个长方形。

  ③学生根据刚才的演示模仿操作,体会平移的过程。

  3、归纳总结公式

  (1)比较变化前的两个图形,提问:你发现了什么?互相讨论,汇报讨论结果。根据讨论结果完成填空。引导学生明确:你发现了什么?互相讨论,汇报讨论结果。

  ①平行四边形转化为长方形后,面积没有改变。即长方形面积等于平行四边形面积。(同时板书)

  ②这个长方形的长、宽分别与平行四边形的底、高相等。(同时板书)

  (2)根据这些关系,你认为平行四边形的面积计算公式怎样推导出来?强化理解推导过程。板书:平行四边形的面积=底×高

  4、教学字母公式

  (1)介绍每个字母所表示的意义及读法。板书s=a×h

  (2)说明在含有字母的式子里,字母和字母中间的乘号可以记作“·”,也可以省略不写。所以平行四边形面积的计算公式可以写成“s=a·h或“s=ah”。(同时板书)

  (3)提问:计算平行四边形面积,需要知道哪些条件?

  三、应用

  1、p、66页例题:一块平行四边形钢板(如下图),它的面积是多少?(得数保留整数)

  3.5厘米4.8厘米

  ①读题,理解题意。

  ②学生试做,指名板演。提醒学生注意得数保留整数。

  ③订正。提问:根据什么这样列式?

  2、完成p、72页做一做第1.2题。订正时提问:计算时注意哪些问题?

  3、填空任意一个平行四边形都可以转化成一个(),它的面积与原平行四边形的.面积()。这个长方形的长与原平行四边形的()相等。这个长方形的()与原平行四边形的()相等。因为长方形的面积等于(),所以平行四边形的面积等于()。

  4、判断,并说明理由。

  (1)两个平行四边形的高相等,它们的面积就相等()

  (2)平行四边形底越长,它的面积就越大()

  5、你能求出下列图形的面积吗?如果能,请计算出面积。(单位:厘米)16 20 15 20

  6、练习十七第3题

  四、体验

  今天,你学会了什么?怎样求平行四边形的面积?平行四边形的面积计算公式是怎样推导的?

  五、作业练习

  十六节第2题。

  第二课时

  教学内容:

  平行四边形面积计算的练习(p、74~75页练习十七第4~9题。)

  教学要求:

  1、巩固平行四边形的面积计算公式,能比较熟练地运用平行四边形面积的计算公式解答有关应用题。

  2、养成良好的审题习惯。教学重点:运用所学知识解答有关平行四边形面积的应用题。

  教学过程:

  一、基本练习

  1、口算。(练习十六第4题)

  4.9÷0.7 5.4+2.6 4×0.25 0.87-0.49 530+270 3.5×0.2 542-98 6÷12

  2、平行四边形的面积是什么?它是怎样推导出来的?

  3、口算下面各平行四边形的面积。

  ⑴底12米,高7米;

  ⑵高13分米,第6分米;

  ⑶底2.5厘米,高4厘米

  二、指导练习

  1、补充题:一块平行四边形的麦地底长250米,高是78米,它的面积是多少平方米?

  ⑴生独立列式解答,集体订正。

  ⑵如果问题改为:“每公顷可收小麦7000千克,这块地共可收小麦多少千克?

  ①必须知道哪两个条件?

  ②生独立列式,集体讲评:先求这块地的面积:250×780÷10000=1.95公顷,再求共收小麦多少千克:7000×1.95=13650千克

  ⑶如果问题改为:“一共可收小麦58500千克,平均每公顷可收小麦多少千克?”又该怎样想?与⑵比较,从数量关系上看,什么相同?什么不同?讨论归纳后,生自己列式解答:58500÷(250×78÷1000)

  ⑷小结:上述几题,我们根据一题多变的练习,尤其是变式后的两道题,都是要先求面积,再变换成地积后才能进入下一环节,否则就会出问题。

  2、练习十七第6题:下土重量各平行四边形的面积相等吗?为什么?每个平行四边形的面积是多少?

  1.6厘米2.5厘米

  ⑴你能找出图中的两个平行四边形吗?

  ⑵他们的面积相等吗?为什么?

  ⑶生计算每个平行四边形的面积。

  ⑷你可以得出什么结论呢?(等底等高的平行四边形的面积相等。)

  3、练习十七第10题:已知一个平行四边形的面积和底,(如图),求高。 28平方米7米分析与解:因为平行四边形的面积=底×高,如果已知平行四边形的面积是28平方米,底是7米,求高就用面积除以底就可以了。

  三、课堂练习

  练习十六第7题。

  四、作业

  练习十六第5.8.9.11题。

初中数学平行四边形教案2

  一、内容和内容解析

  1、内容

  平行四边形对角线的性质。

  2、内容解析

  这节课承接了上一节平行四边形的性质:对边相等,对角相等,本节继续研究对角线互相平分的性质,课本先设置一个探究栏目,让学生发现结论,形成猜想,然后利用三角形全等证明这个结论,对角线互相平分是平行四边形的重要性质,在九年级上册“旋转”一章,通过旋转平行四边形,得到平行四边形是中心对称图形和对角线互相平分,学生会有进一步体会。平行四边形是最基本的几何图形,它在生活中有着十分广泛的应用。这不仅表现在日常生活中有许多平行四边形的图案,还包括其性质在生产、生活各领域的实际应用。是中心对称图形的具体化,是以后学习平行四边形判定的重要依据。

  教科书例2是的平行四边形对角线的性质的直接运用,而且涉及勾股定理以及平行四边形面积的计算。

  基于以上分析,本节课的教学重点是:平行四边形对角线性质的探究与应用。

  二、目标和目标解析

  1、目标

  (1)探究并掌握平行四边形对角线互相平分的性质。

  (2)能综合运用平行四边形的`性质解决平行四边形的有关计算问题,和简单的证明题。

  2、目标解析

  达成目标(1)的标志是:能发现平行四边形对角线互相平分这一结论并形成猜想,会利用三角形全等证明猜想。

  达成目标(2)的标志是:能发现平行四边形的边、角、对角线等基本要素间的关系,会运用等量代换等进行线段长、图形面积等的计算,掌握简单的逻辑论证。

  三、教学问题诊断分析

  本节课在已学习了三角形全等证明,平行四边形定义,平行四边形边、角的性质的基础上,在积累了一定的经验的情况下学习本节课内容。例2是既是巩固平行四边形对角线互相平分的性质,又复习了勾股定理以及平行四边形面积的计算。这些问题常常需要运用勾股定理求平行四边形的高或底。这些问题比较综合,需要灵活运用所学的有关知识加以解决。

  基于以上分析,本节课的教学难点是:综合运用平行四边形的性质进行有关的论证和计算。

  四、教学过程设计

  引言:前面我们研究了平行四边形的边、角这两个基本要素的性质,下面我们研究平行四边形对角线的性质。

  1、引入要素探究性质

  问题1我们研究平行四边形边、角这两个要素的性质时,经历了怎样的过程?

  师生活动:学生回顾我们研究平行四边形边、角这两个要素的性质时经历的过程,并请学生代表回答。

  设计意图:回顾研究研究平行四边形边、角这两个要素的性质时经历的过程,总结研究平行四边形的性质的一般活动过程(即观察、度量、猜想、证明等),积累研究图形的活动经验,为本节课研究对角线要素作准备。

  问题2如图,在ABCD中,连接AC,BD,并设它们相交于点O,OA与OC,OB与OD有什么关系?你能证明发现的结论吗?

  师生活动:启发学生去发现并猜想:平行四边形的对角线互相平分。

  你能证明上述猜想吗?

  教师操作投影仪,提出下面问题:

  图中有哪些三角形全等?哪些线段是相等的?请同学们用多种方法加以验证。

  学生合作学习,交流自己的思路,并讨论不同的验证思路。

  教师点拨:图中有四对三角形全等,分别是:△AOB≌△COD,△AOD≌△COB,

  △ABD≌△BCD,△ADC≌△CBA、有如下线段相等:OA=OC,OB=OD,AD=BC,AB=DC证明中应用到“AAS”,“ASA”证明。

  师生归纳整理:

  定理:平行四边形的对角线互相平分。

  我们证明了平行四边形具有以下性质:

  (1)平行四边形的对边相等;

  (2)平行四边形的对角相等;

  (3)平行四边形的对角线互相平分。

  设计意图:应用三角形全等的知识,猜想并验证所要学习的内容。

  2、例题解析应用所学

  问题3如图,在ABCD中,AB=10,AD=8,AC⊥BC,求BC、CD、AC、OA的长以及ABCD的面积。

  师生活动:教师分析解题思路,可以利用平行四边形对边相等求出BC=AD=8,CD=AB=10,在求AC长度时,因为∠ACB=90°,可以在Rt△ACB中应用勾股定理求出AC= =6,由于OA=OC,因此AO=3,求ABCD面积是48,学生板演解题过程。

  变式追问:在上题中,直线EF过点O,且与AB,CD分别相交于点E,F、求证:OE=OF、图中还在哪些相等的量?

  设计意图:对于几何计算或证明,分析思路和方法是根本,本题既巩固平行四边形对角线互相平分的性质,又复习勾股定理和平行四边形面积计算的知识,通过本例,让学生学会如何分析,渗透“综合分析法”。让学生理解平行四边形对角线互相平分的性质的应用价值。

  3、课堂练习,巩固深化

  (1)ABCD的周长为60cm,对角线交于O,△AOB的周长比△BOC的周长大8cm,则AB、BC的长分别是_________、

  (2)如图,在ABCD中,BC=10,AC=8,BD=14,△AOD的周长是多少?△ABC与△DBC的周长哪个长?长多少?

  设计意图:通过练习,深化理解平行四边形的性质,提高选择运用平行四边形定义、性质解决问题的能力。

  4、反思与小结

  (1)我们学习了平行四边形的哪些性质?

  (2)结合本节的学习,谈谈研究平行四边形性质的思想方法。

  (3)根据研究几何图形的基本套路,你认为我们还将研究平行四边形的什么问题?

  5、布置作业

  教科书P49页习题18.1第3题;

  教科书第51页第14题。

初中数学平行四边形教案3

 教学内容:课本第72页。

  教学要求:使学生能比较熟练地应用平行四边形的计算公式,解答有关问题。

  教学过程:

  一、复习。

  1.平行四边形面积计算公式是什么?它是怎样推导出来的?(平行四边形的面积=底×高,是通过把平行四边形割补成长方形推导出来的)

  2.填空。

  0.28平方米=()平方分米=()平方厘米

  32000平方米=()公顷

  0.5平方千米=()公顷。

  3.求下面平行四边形的面积。(口答)

  (1)底18厘米,高10厘米

  (2)底25分米,高4分米

  (3)底12.5米,高8米

  (4)底16米,比高多6米

  (5)底和高都是30厘米

  二、新授。

  1.揭示课题。

  师:昨天我们学习了平行四边形的面积计算公式,今天我们就来应用这一公式来解决一些题目。(板书:平行四边形面积公式的应用)

  2.出示例题。

  一块平行四边形钢板(如下图),它的面积是多少?(得数保留整数)

  学生口述解题思路:求钢板的面积就是求平行四边形的面积。

  学生独立解答

  4.8×3.5?17(平方米)

  答:它的面积约是17平方米

  补充问题:如果这块钢板每平方米重3.9千克,钢板重多少千克?

  总重量=每平方米重量×平方米数

  学生试做。

  集体评讲。

  钢板重量:3.9×17=66.3(千克)

  三、巩固练习。

  1.P72页做一做。

  通过书面练习第1题达到巩固求平行四边形面积的计算能力。

  指导书本第2题近似平行四边形的`计算方法:把不规则的近似四边形的四条边,用直线取直成为一个假设中的平行四边形。找出相应的底和高的数值即可求出它的近似面积。

  2.练习十七第6题。

  先让学找出图中的两个平行四边形,然后提问:这两个平行四边形的底和高分别是多少?求它们的面积我们根据什么公式来求?(底是2.5厘米,高是1.6厘米,根据S=ah来求)

  学生独立计算后,问:这两个平行四边形的面积相等吗?为什么?(它们的底和高分别相等)

  得出:底和高分别相等的平行四边形,面积也相等。

  判断:下面的平行四边形面积相等吗?

  3.练习十七第7题。

  学生独立完成。集体核对。

  4.练习十七第8题。

  先引导学生观察这一道题与刚讲的例题有什么相同点。要解决这个问题要先求什么?(先求这块菜地的面积。

  四、作业

  练习十七第9题。

  五、补充练习。

  已知一个平行四边形的面积是28平方米,底是7米,求高是多少?

  引导学生思考:因为:a·h=S

  所以:h=S÷a

初中数学平行四边形教案4

  教学建议

  1、重点平行四边形的判定定理

  重点分析平行四边形的判定方法涉及平行四边形元素的各方面,同时它又与平行四边形的性质联系,判定一个四边形是否为平行四边形是利用平行四边形性质解决其他问题的基础,所以平行四边形的判定定理是本节的重点、

  2、难点灵活运用判定定理证明平行四边形

  难点分析平行四边形的判定方法较多,综合性较强,能灵活的运用判定定理证明平行四边形,是本节的难点、

  3、关于平行四边形判定的教法建议

  本节研究平行四边形的判定方法,重点是四个判定定理,这也是本章的重点之一。

  1、教科书首先指出,用定义可以判定平行四边形、然后从平行四边形的性质定理的逆命题出发,来探索平行四边形的判定定理、因此在开始的教学引入中,要充分调动学生的情感因素,尽可能利用形式多样的多媒体课件,激发学生兴趣,使学生能很快参与进来、

  2、素质教育的主旨是发挥学生的主体因素,让学生自主获取知识、本章重点中前三个判定定理的顺序与它的性质定理相对应,因此在讲授新课时,建议采用实验式教学模式或探索式教学模式:在证明每个判定定理时,由学生自己去判断命题成立与否,并根据过去所学知识去验证自己的`结论,比较各种方法的优劣,这样使每个学生都积极参与到教学中,自己去实验,去探索,去思考,去发现,在动手动脑中得到的结论会更深刻――同时也要注意保护学生的参与积极性、

  3、平行四边形的判定方法较多,综合性较强,能灵活的运用判定定理证明平行四边形,是本节的难点、因此在例题讲解时,建议采用启发式教学模式,根据题目中具体条件结合图形引导学生根据分析法解题程序从条件或结论出发,由学生自己去思考,去分析,充分发挥学生的主体作用,对学生灵活掌握熟练应用各种判定定理会有帮助。

  [教学目标]

  通过本节课教学,使学生训练掌握平行四边形的各条判定定理,并能灵活地运用平行四边形的性质定理和判定定理及以前学过的知识进行有关证明,培养学生的逻辑思维能力。

  [教学过程]

  一、准备题系列

  1、复习旧知识:前面我们学习了平行四边形的性质,哪位同学能叙述一下。(答对者记分,答错的另点同学补充)

  2、小实验:有一块平行四喧形的玻璃片,假如不小心碰碎了解部分(如图所示),同学们想想看,有没有办法把原来的平行四边形重新画出来?

  (让学生思考讨论,再各自画图,画好后互相交流画法,教师巡回检查。对个别差生稍加点拨,最后请学生回答画图方法)学生可能想到的画法有:

  ⑴分别过A、C作DC、DA的平行线,两平行线相交于B;

  ⑵过C作DA的平行线,再在这平行线上截取CB=DA,连结BA;

  ⑶分别以A、C为圆心,以DC、DA的长为半径画弧,两弧相交于B,连结AB、CB。

  还有一种一法,学生不易想到,即由平行四边形对角线的特性,引导学生得出连结AC,取AC的中点O,再连结DO,并延长DO至B,使BO=DO,连结AB、CD。

  二、引入新课

  上面作出的四边形是否都是平行四边形呢?请同学们猜一猜。生答后师指出这就是今天所要不得研究的问题“平行四边形的判定”(板书课题)。

  三、尝试议练

  1、要判定我们刚才画出的四边形是不是平行四边形,应当加以证明。第一种画法,由平行四边形的定义可知,它是平行四边形(定义可作性质也可作判定)。

  2、现在我们来看看第二种画法,这就是平行四边形判定定理一(翻开课本看它的文字叙述)。请想想,一组对边平行且相等的四边形究竟是不是平行四边形呢?这里已知是什么?求证是什么?请写出。

  自学课本上的证明过程,看后提问:这个证明题不作辅助线行不行?为什么?(因为要证平行线,一般要证两角相等,或互补,要证两角相等,一般要证全等三角形,而这里没有三角形,要连一对角线才有三角形)

  3、再看第三种画法,在两组对边分别相等的情况下是不是平行四边形?教师写出已知、求证,请两位学生上台证明,其余在课堂练习本上做。(注意考虑要不要添辅助线)完成证明后提问哪些学生是用判定定理一落千丈证明的?哪些是用定义证明的?(解题后思考)

  四、变式练习

  1、再看看第四种画法,可知,已各条件是四边形的对角线互相一平分,这种情况下它是不平行四边形?

  阅读课本上的判定定理之后,要求学生思考用什么方法求证最简便?(应该用判定定理一)2。变式题

  ⑴两组对角分别相等的四边形是不是平行四边形?为什么?(练习第1题)(口述证明,不要示书面证明)(问要不要添辅助线?)

  ⑵一组对边平行,一组对角相等的四边形是不是平行四边形?(教师补充)

  ⑶一组对边相等,一组对家相等及一组对边相等,另一组对边相等的四边形是不是平行四边形?(引导学生在草稿纸上画图思考,然后回答不是平行四边形。因为边角不能证全等三角形)

  ⑷自学课本例1思考:此例证明中,什么地方用了平行四边形的“性质”?什么地方用“判定”定理?

  观察下图:

  平行四边形ABCD中,<A、<C的平行线分别交对边于E和F,求证:AE=FC(怎样证最简便?)

  五、课堂小结

  1、今天这节课我们学了什么?平行四这形的判定有哪些方法?试列举之。

  2、这些平行四边形的判定方法中最基本的是哪一条?

  3、平行四边形的判定定理和性质有什么关系?同一个证明题中应注意什么地方用判定,什么地方性质?

初中数学平行四边形教案5

  教学目标

  1、让学生在联系生活实际和动手操作的过程中认识平行四边形,发现平行四边形的基本特征。

  2、让学生在活动中进一步积累认识图形的学习经验,学会做一个平行四边形,会在在方格纸上画平行四边形,能正确判断一个平面图形是不是平行四边形。

  3、学生感受图形与生活的联系,感受平面图形的学习价值,进一步发展对“空间与图形的学习兴趣。

  教学重点

  进一步认识平行四边形,发现平行四边形的基本特征。

  教学难点

  进一步认识平行四边形,发现平行四边形的基本特征。

  教具

  三角形框架、长方形框架、正方形框架,分别长5cm、10cm、15cm、20cm的纸条不等,大头钉。

  课时一课时

  教学过程

  一、导入

  1、复习学过的三角形、长方形和正方形。

  师:同学们喜欢玩游戏吗?学习新课之前我们来玩一个猜图游戏。(教具三角形框架、长方形框架、正方形框架)

  2、师:同学们真棒!现在老师要变一个魔术给你们看。看看你们能不能认出它。(拿出长方形教具,拉动长方形框架对角使其变为另一个图形。)根据学生的回答,板书:认识平行四边形。一边板书,一边说“今天,我们就来认识平面图形家族的另一个新成员平行四边形。相信通过这节课我们一起来进一步研究平行四边形,相信通过研究,我们会有新的收获。

  二、探索新知

  1、找平行四边形。

  师:同学们每天都要经过校门进入校园,但是你们注意观察我们的校园了吗?翻开书本三十七页,在图中你们能找到平行四边形吗?

  在主题上找,在学校里找,在身边生活中找。

  师:你们还能找出生活中的一些平行四边形吗?(如活动衣架、风筝、楼梯栏杆)

  2、画平行四边形

  (1)师:你们想把刚才在生活中找到的平行四边形在电子图中画出来吗?(生答)在38页的点子图中画出来。

  (2)展示作品,引导学生参与评价。

  3、做平行四边形

  (1)师:现在各小组手上都有很多纸条,那我们可不可以自己动手做一个平行四边形呢?

  每一小组发教具纸条(5cm、10cm各一条,15cm、20cm各两条),用大头钉固定。同学们自己动手做平行四边形。(可随意交流。)做完后,派代表说一说心得。

  (2)老师可以提问,如:

  a、师:你们小组是怎样做的这个平行四边形呢?

  b、师:你们在做的过程中发现了什么?等等。

  4、平行四边形的特性

  师:我们老师告诉我平行四边形还会听口令呢,我们来试试,我们一起喊向左——向右——变大——变小。看看你们手中的也会不会听口令呢?

  设疑:师:三角形也会听口令吗?(摆弄三角形框架)

  (在通过动手操作的过程中,学生不难发现平行四边形的易变性)

  然后在分组让同学们拉一下三角形的框架和平行四边形的框架,进行比较,有同学们总结出:

  平行四边形的特性——易变性三角形的特性——稳定性(板书)

  介绍三角形的稳定性在生活中的'应用——电线杆的拉线、篮球架

  介绍平行四边形的易变性在生活中的应用——升降架、伸缩拉门

  (出示课件或者图片)

  5、认识平行四边形的特点——对边相等

  提问:师:平行四边形有几条边围成?演示:板书(上、下、左、右)设疑:师:是否随意四条边就可以组成平行四边形呢?

  (有学生总结出)从做的过程中发现是不能的,且对边相等。

  小结:平行四边形的对边相等。(板书)

  6、练习

  (1)书本39页练习题1.2题。

  (2)第三题大家一起讨论。

  三、作业

  总结师:这节课我们认识了一个新图形——平行四边形,并知道我们在生活中找到它。请你们对生活中的物体在进行,去找一找我们今天认识的这个新图形。

  板书设计

  认识平行四边形

  三角形的特性——稳定性

  上

  平行四边形的特性——易变性右

  左

  平行四边形的特点——对边相等下

初中数学平行四边形教案6

  教学目标

  知识与技能目标

  1.经历平行四边形判别条件的探索过程,发现平行四边形的常用判别条件。

  2.掌握平行四边形的判别条件;对角线互相平分的四边形是平行四边形;一组对边平行且相等的四边形是平行四边形;两组对边分别相等的四边形是平行四边形。

  3.逐步掌握说理的基本方法。

  过程与方法目标

  1.在探索平行四边形的判别条件的过程中,发展学生的合情推理意识,主动探索的习惯。

  2.鼓励学生用多种方法进行说理。

  情感与态度目标

  1.培养学生探索创新的能力,开拓学生思路,发展学生的思维能力。

  2.培养学生合作学习,增强学生的自我评价意识。

  教材分析

  教材通过创设“钉制平行四边形框架”这一情境,便于学生发现和探索平行四边形的常用判别方法。如有条件可要求学生自己准备,由学生自我操作。也可由教师演示。

  教学重点:平行四边形的判别方法。

  教学难点:利用平行四边形的判别方法进行正确的说理。

  学情分析

  初二学生对平面图形的认识能力正在形成,抽象思维还不够,学习几何知识处于现象描述和说理的过渡时期。因此,对这部分内容的学习,要引导学生学会正确的说理,理清楚四边形在什么条件下用判定定理,在什么条件下用性质定理。

  教学流程

  一、创设情境,引入新课

  师:请同学们拿出课前准备的小木条,帮助小明的爸爸钉制平行四边形的框架。

  学生活动:学生按小组进行探索。

  探索方法一:如图,将两根相等木条AC,BD的中点重叠,并用钉子固定,则四边形ABCD就是平行四边形。

  探索方法二:如图,用两根同样长的木条AB 、 CD平行放置,再用木条.AD 、 BC加固,得到的四边形ABCD就是平行四边形。

  探索方法三:如图,将两根不等的木条AB 、 CD平行放置,再将两根不等木条平行放置在AB 、 CD上得到四边形PQRM是平行四边形。

  教师点评:对学生采用多种探索方法得出结论给予鼓励。

  二、归纳得出结论

  平行四边形判别:(如图)

  (1)两条对角线互相平分的四边形是平行四边形;

  (2)一组对边平行且相等的四边形是平行四边形;

  (3)两组对边分别平行的四边形是平行四边形。

  数学表达式:

  (1) ?? >四边形ABCD是平行四边形

  (2) ?? >四边形ABCD是平行四边形

  (3) ?? >四边形ABCD是平行四边形

  三、试一试

  如图,AC ∥ ED,点B在AC上且AB=ED=BC,找出图中的平行四边形。

  学生活动:学生分组讨论,采用语言叙述,正确说理方法不限。

  解:四边形ABDE,四边形BCDE

  理由是:

  ?? >四边形ABDE是平行四边形

  ?? >四边形BCDE是平行四边形

  四、做一做

  一组对边相等,一组对角相等的四边形是平行四边形吗?如果是,请说明其中的道理,如果不是,请举一个反例。

  分析:大家知道,一个平行四边形是由两个全等的三角形将其一边重合,适当拼接而成的,如果我们能找到两个三角形,有两边相等,且有一对角相等,但不全等,就可以说明这个四边形不一定是平行四边形。

  探索方法:如图(1),取一个等腰△ ABC其中AB=AC,在BC上取一点D,使BD ≠ DC,连结AD,沿AD将他剪开,再将△ ADB的A点与△ ADC的D点重叠,△ ADB的D点与△ ADC的A点重叠在一起,如图(2),这时,AB=DC,∠ B= ∠ C,但由于BD ≠ AC(即图(1)中的.BD ≠ DC)因而四边形ABCD不是平行四边形。

  五、课堂小结

  1.本节所学判别方法:

  两组对边分别平行的四边形是平行四边形;

  对角线互相平分的四边形是平行四边形;

  一组对边平行且相等的四边形是平行四边形。

  2.在解决平行四边形的问题时,要尽可能的运用平行四边形的判别方法,不要总是依赖于全等三角形,否则不利于掌握新的知识。

  教学反思

  本节以钉制平行四边形的框架引入,学生经过探索讨论,得出平行四边形的判别方法。教师要引导学生正确的运用平行四边形的知识解决平行四边形的相关问题,要能正确的进行说理和推理,培养学生的思维力。

初中数学平行四边形教案7

  1、使学生理解平行四边形面积计算公式的来源,初步掌握并学会运用面积公式。

  2、培养学生动手操作能力,发展空间思维能力;培养学生的大胆创新意识和小组间的团结协作精神。

  理解面积公式的推导过程。

  几个相同的平行四边形、投影、课件、剪刀

  拍卖公告

  拍卖:为了大力发展小城镇建设,本镇现有一块地皮欲拍卖,有意者请与新袁镇政府办公室联系。

  新袁镇人民政府

  20xx年11月1日

  问:

  1、如果你想参加竞拍,那你应该知道哪些条件呢?

  2、如果这块地是个正方形,那求它的面积应该知道那些条件呢?长方形呢?

  3、如果是平行四边形,那应该知道什么呢?(板书:平行四边形面积计算公式)

  1、出示一个平行四边形,引导学生按照每个方格代表1平方厘米,让学生说出有多少?(让学生讨论如果不满一格应该怎么办)

  2、出示一个长方形,再引导学生计算一下,说出结果。

  比较一下:长方形的长、宽、面积分别与平行四边形的底、高、面积有什么关系?

  小结:从上面可以看出,平行四边形的面积也可以用数方格的方法求出来,但数起来比较麻烦,如果是拍卖的那块地你还能数嘛?那想一想,能不能像计算长方形面积那样,找出计算平行四边形面积的计算公式?

  从上面的比较中我们发现了平行四边形的底、高、面积分别与长方形的长、宽、面积之间的关系,那你能不能把一个平行四边形转化成一个长方形呢?想一想,该怎么做?

  3、让学生拿出准备好的平行四边形进行剪拼(教师巡视)然后指名到前边来演示。

  4、课件演示平行四边形转化成长方形的过程

  刚才发现同学们把平行四边形转化成长方形时,就是把从平行四边形左三角形直接放在剩下的梯形的右边,拼成长方形,这样好吗?在变边剪下的直角换图形的位置时,怎样按照一定的。规律呢?

  (1)、先沿着平行四边形的高剪下左边的直角三角形。

  (2)、左手按住剩下的梯形的.右部,右手拿着剪下的直角三角形沿着底边慢慢向右移动。

  (3)、移动一段后,左手改按梯形的左部,右手再拿着直角三角形继续沿着底边慢慢向右移动,到两个斜边重合为止。

  (3)、引导学生比较

  5、这个由平行四边形转化成的长方形的面积与原来的平行四边形的面积有什么变化?为什么?

  6、这个长方形的宽与原来的平行四边形的底有什么样的关系?

  7、这个长方形的宽与原来的平行四边形的高有什么样的关系?

  归纳总结:任意一个平行四边形都可以转化成一个长方形,它的面积和原来的平行四边形的面积相等,它的长、宽分别与原来的平行四边形的底、高相等。

  8、这个长方形的面积怎么求?(板书:长方形的面积:长*宽)

  9、那么平行四边形的面积怎么求?

  s=a × h(告知s和h的读音)

  说明含有字母的式子里,字母和字母中间的乘号可以记作“。”,写成a·h,也可以省略不写,所以平行四边形面积的计算公式可以写成s=a·h或s=ah

  10、回到课件首页,说一下那块地皮的底和高,引导学生想想根据什么列式?

  11、完成后让学生看书第65页例1

  12、测测自己准备的平行四边形量一量它的底和高各是多少厘米?再求出面积。

  略

  课后练习题

初中数学平行四边形教案8

  学习目标:

  1、通过具体动手操作得出矩形的概念,知道矩形与平行四边形的区别与联系

  2、通过类比平行四边形的性质定理,推导并掌握矩形的性质定理,会用定理进行一些简单的计算证明、

  3、通过矩形的对角线相等这一性质能推导出直角三角形斜边上的中线等于斜边的一半,感受直角三角形与矩形之间的内在联系,发展学生的合理推理的能力

  学习重难点:

  重点:矩形的性质定理

  难点:灵活应用矩形的性质进行有关的计算与证明

  课前准备

  教具准备:活动平行四边形框架、教师准备PPT课件

  教学过程:

  知识回顾

  1、什么叫平行四边形?

  2、平行四边形有哪些性质?

  【设计意图】:

  通过对旧知的复习,一方面巩固就知,另一方面为学习新知做好铺垫

  合作探究一:矩形的定义

  阅读课本第17-18页,“实验与探究”,思考:什么叫做矩形?

  用四根木条制作一个平行四边形教具。利用平行四边形的不稳定性,演示下图,当平行四边形的一个内角由锐角变为钝角的过程中,会发生怎样的特殊情况,这时的图形是什么图形、从上面的演示过程可以发现:平行四边形具备什么条件时,就成了矩形?

  【设计意图】:

  通过小组合作观察,讨论平行四边形具备什么条件时,就成了矩形,自己归纳出矩形的定义、给学生更多的思考空间,促进学生积极思考,发展学生的思维

  归纳:有一个角是直角的`平行四边形叫做矩形、

  合作探究二:矩形的性质定理

  1、自主完成18页的观察与思考,通过实际操作回答提出的问题

  2、小组合作:完成对性质的证明过程

  【设计意图】:

  通过利用手中的矩形纸片动手操作使学生对矩形的性质获得丰富的直观体验,为总结矩形的性质定理打下坚实基础

  矩形的性质定理1:矩形的四个角都是直角

  矩形的性质定理2:矩形的两条对角线相等

  合作探究三:直角三角形的性质定理3

  设矩形的对角线AC与BD交于点O,那么,BE是Rt△AB中一条怎样的特殊线段

  (BO是Rt△ABC中斜边AC上的中线)它与AC有什么大小关系,为什么?

  【设计意图】:

  根据图形学生很容易猜想结果,关键是从数学的角度证明留足充分的时间让学生交流,教师适时引导,明确论证方法、学生独立完成证明,以培养学生的推理能力、让学生感受数学结论的确定性和证明的必要性

  结论:直角三角形斜边上的中线等于斜边的一半

  例题讲解:

  例1、如图,矩形ABCD的两条对角线相交于点O,∠AOB=60°,AB=6㎝,求矩形对角线AC的长?

  当堂检测:

  1、矩形具有而平行四边形不具有的性质()

  (A)对角相等(B)对边相等(C)对角线相等(D)对角线互相平分

  2、已知Rt△ ABC中,∠ABC=900,BD是斜边AC上的中线

  (1)若BD=3㎝,则AC=㎝

  (2)若∠C=30°,AB=5㎝,则AC=㎝,BD=㎝

  3、在矩形ABCD中,若已知∠DOC=120°,AC=8㎝,求AD的长

  4、工人师傅做铝合金窗框分下面三个步骤进行:

  (1)先截出两对符合规格的铝合金窗料(如图1),使AB=CD,EF=GH;

  (2)摆放成如图(2)的四边形,则这时窗框的形状是_____,根据的数学道理是__________;

  (3)将直角尺靠紧窗框的一个角(如图3)调整窗框的边框,当直角尺的两条直角边与窗框无缝隙时(如图4),说明窗框合格,这时窗框是____,根据的数学道理是________________。

  课堂小结:

  请说出你本节课的收获,与大家一块分享!!

  作业:

  课本P、20第2题

  板书设计:

  xxx

初中数学平行四边形教案9

  教学目标

  知识与技能:

  在理解的基础上掌握平行四边形的面积计算公式,能正确的计算平行四边形的面积。

  过程与方法:

  通过操作,观察、比较,让学生经历平行四边形面积公式的推导过程,发展学生的空间观念,初步渗透转化的思想方法,培养学生的分析、综合、抽象、概括、推导能力和解决问题的能力。

  情感态度与价值观:

  通过数学活动,培养学生初步的推理能力和合作意识,让学生体会平行四边形面积计算在生活中的应用。

  教学重难点

  教学重点:

  掌握平行四边形的面积计算公式,并能正确运用。

  教学难点:

  平行四边形面积计算公式的推导。

  教学工具

  多媒体课件,平行四边形纸片,剪刀,学具袋

  教学过程

  教学过程设计

  1 、复习旧知

  请同学们回忆一下我们学过的几何图形有哪些?并说说你会计算的图形的面积计算公式。(课件出示)

  2 、情境引入

  (一)、故事激趣

  同学们喜欢看喜羊羊的动画片吗?据说羊村的牧草越来越少,所以,村长决定把草地分给小羊们自己管理和食用。懒羊羊分到的是一块长方形地,喜羊羊分到的是一块平行四边形地,他们认为自己的草地更少,争了起来。同学们,你们能不能动动脑筋,帮他们解决一下这个问题?看看哪块草地的面积更大?(课件出示两块草地)

  (二)、学生思考、猜测

  学生在猜测中明白:必须准确的知道两个图形的面积才能进行比较。可是学生只会计算长方形的面积,那么这节课我们就来研究平行四边形的面积,及时点出课题并板书课题:平行四边形的面积

  3、探究新知

  (一)利用方格,初步探究

  1、以前用数方格的方法得到了长方形和正方形的面积,那么,我们能不能用数方格的方法得到平行四边形的面积呢?我们一起来试一试。

  课件出示:比较两个图形的大小,然后引进格子图。

  师:请你们来数一数比较一下它们的面积是多少?(1小格是平方厘米,不满一小格的都按半格计算)

  2、同桌交流方法

  3、生汇报想法

  4、通过数方格你发现了什么?

  生:我发现平行四边形的底和长方形的长相等,平行四边形的高和长方形的宽相等,平行四边形的面积和长方形的面积也相等

  5、小结(指图)通过数方格我们发现,平行四边形的底和长方形的长相等,平行四边形的高和长方形的宽相等,平行四边形的面积和长方形的面积也相等。这是一种巧合呢?还是平行四边形和长方形之间有某种特殊的联系呢?

  如果,我用数方格的方法得到这个平行四边形的面积,现在我想得到一个很大的平行四边形花坛的面积,你认为数方格的方法怎么样?有没有合适的方格纸?那我们能不能找到一个方法,适用于计算所有平行四边形的面积呢?

  (二)动手操作,深入探究

  1、师提醒大家思考:怎样才能得到平行四边形的面积呢?能不能把它转化成我们以前学过的图形呢?

  2、学生拿出准备好的学具:不同的平行四边形,剪刀,三角板等学具,动手操作,寻找平行四边形面积的计算方法。

  师提示:刚刚有同学说可以把平行四边形变成长方形后再计算它的面积,那我们要怎么剪才能使平行四边形变成长方形呢?这其实就是计算平行四边行面积的`第二个方法就是割补法。

  (板书:割补法)

  3、四人一小组,先通过自己的思考向组员介绍你研究方案;组员商议如何通过画一画、剪一剪等方法来进行操作研究;由组长进行操作,组员协助。有困难的小组可以请老师帮忙;比一比哪组同学能快速解决问题。

  4、展示学生作品:不同的方法将平行四边形变成长方形。

  提问:观察拼出的长方形和原来的平行四边形,你发现了什么?

  平行四边形的底和长方形的长相等,平行四边形的高和长方形的宽相等,平行四边形的面积和长方形的面积也相等。

  引导学生用字母来表示:S表示面积,a表示底,h表示高。那么面积公式就是S = ah

  (边说边板书)

  4 、学以致用

  (一)、课件出示出示例1:平行四边形花坛的底是6m,高是4m,它的面积是多少?我们根据什么公式来列式计算,学生试做,并说说解题方法,指名板书。

  (板书:S=ah=6×4=24㎡)

  (二)、课件出示练习题,学生独立完成。

  1、有一块地近似平行四边形,底43米,高20、1米,面积是多少平方米?

  2、填表

  3、判断:

  (1)平行四边形的底是7米,高是4米,面积是2 8米。()

  (2)a=5分米,h=2米,S=100平方分米。()

  4、下面对平行四边形面积的计算对吗?

  6×3=18(平方米)()

  5、下面对平行四边形面积的计算对吗?

  8×7=56(平方分米)()

  6、思考题:你有几种方法求下面图形的面积?

  课后小结

  回想一下刚才我们的学习过程,你有什么收获?

  计算平行四边形的面积必须知道什么条件,平行四边形的面积公式是怎样推

  板书

  平行四边形的面积

  长方形的面积=长×宽

  平行四边形的面积=底×高

初中数学平行四边形教案10

教学内容:<span style="background:#B2EC0A;"> </span>§11

  教案示例

  1 、矩形

  教学目标

  1、探索并掌握矩形的概念及其特殊的性质。

  2、学会识别矩形。

  3、在观察、操作、推理、归纳等探索过程中,发展学生的合情推理能力,进一步培养学生数学说理的习惯与能力。

  教学重点与难点

  重点:矩形特殊特征与性质的探索过程。

  难点:学生数学说理能力的培养。

  教学准备

  矩形纸张、剪刀、矩形纸板、四段木条做成的平行四边形的活动木框。

  教学过程

  一、提问。

  1、平行四边形的特征:对边(),对角(),对角线()。

  学生回答:平行四边形对边相等,对角相等,对角线互相平分

  2、如图,在平等四边形ABCD中,AE垂直于BC,E是垂足。如果∠ ABE = 55 °,那么∠ ADC与∠ DAB分别等于多少度?为什么?(让学生回忆平行四边形的特征与识别。)

  学生回答:由平行四边形的特征知,∠ ADC = ∠ ABE = 55o,∵ AD//BC,∴∠ ABE+ ∠ DAB = 180o,则∠ DAB = 180o?55o = 125o

  二、引导观察。

  如图,用四段木条做一个平行四边形的活动木框,将其直立在地面上轻轻地推动点D,你会发现什么?

  可以发现,角的大小改变了,但不管如何,它仍然保持平行四边形的形状。

  问题:我们若改变平行四边形的内角,使其一个内角恰好为直角,就能得到一个怎样的平行四边形?

  (教师移动D点,使∠ D = 90 °,让学生观察。)

  从而导入课题:矩形。

  矩形的定义:有一个角是直角的平行四边形是矩形。

  三、探索特征。

  1、探索。(从边、角、对角线入手。)

  请你作矩形纸板的对角线,探索矩形有哪些特征。

  (1)边:对边相等;(2)角:四个角都相等;(3)对角线:相等。

  (学生通过自己的操作、观察、猜想,完全可以得到矩形的特征,这对学生来说是富有意义的活动,学生对此也很感兴趣。)

  2、请你折一折,观察并填空。

  (1)矩形是不是中心对称图形?对称中心是()。

  (2)是不是轴对称图形?对称轴有几条?()。

  学生思考后回答:矩形是中心对称图形,对称中心是两条对角线的交点;矩形是轴对称图形,对称轴有两条。

  教师与学生一起总结:

  矩形的性质:

  ①具有平行四边形的一切性质;

  ②四个角都是直角;

  ③对角线相等且相互平分;

  ④既是中心对称图形,又是轴对称图形,对称轴有两条。

  四、应用举例。

  1、例1如图,矩形ABCD被两条对角线分成四个小三角形,如果四个小三角形的周长的和是86厘米,对角线长是13厘米,那么矩形的周长是多少?

  (矩形的简单的计算问题必须要求学生掌握。此题教师板演,让学生说出理论依据。)

  2、请你思考。识别一个四边形是不是矩形的方法。

  (学生的回答不一定很完整,可以多让几个学生相互补充,逐步完善,最后教师适当的给以点拨。)

  矩形的识别:

  ①四个角都是直角的四边形是矩形。

  ②四个角都相等的.四边形是矩形。

  ③对角线相等的的平行四边形是矩形。

  五、巩固练习。

  1、如图,在矩形ABCD中,找出相等的线段与相等的角。

  2、如图,矩形ABCD的两条对角线交于点O,且∠ AOD=120 °,你能说明AC=2AB吗?

  六、拓展延伸。

  1、如图,已知矩形ABCD的两条对角线相交于点O,∠ AOD=120 °,AB =5厘米,求矩形对角线的长。

  2、工人师傅在做门框或矩形零件时,常常测量它们的两条对角线是否相等来检查直角的精度,为什么?

  七、课堂小结。

  这节课你有什么收获?学到了什么?有什么疑问提出来?

  八、布置作业。

  补充习题

  2 、菱形

  教学目标

  1、探索并掌握菱形的概念及其特殊的性质。

  2、学会识别菱形。

  3、在观察、操作、推理、归纳等探索过程中,发展学生的合情推理能力,进一步培养学生数学说理的习惯与能力。

  教学重难点

  重点:菱形特殊特征与性质的探索过程。

  难点:学生数学说理能力的培养。

  教学准备

  矩形纸张、剪刀。

  教学过程

  一、复习导入。

  1、矩形的性质是什么?

  2、识别矩形的方法有哪些?

  3、导入课题。

  二、引导观察。

  1、将一张矩形的纸对折再对折,然后沿着图中的虚线剪下,打开,你发现这是一个什么样的图形?(同桌互相帮助。)

  菱形:四条边都相等的平行四边形叫做菱形。

  2、探索。

  请你作该菱形的对角线,探索菱形有哪些特征,并填空。

  (从边、对角线入手。)

  (1)边:都相等;(2)对角线:互相垂直。

  (学生通过自己的操作、观察、猜想,完全可以得出菱形的特征,这对学生来说是富有意义的活动,学生对此也很感兴趣。)

  问题:你怎样发现的?又是怎样验证的?

  (可以指名学生到讲台上讲解一下他的结果。)

  3、概括。

  菱形特征1:菱形的四条边都相等。

  菱形特征2:菱形的对角线互相垂直平分,并且每一条对角线平分一组对角。

  引导学生剖析矩形与菱形的区别。

  矩形的对边平行且相等,四个角都是直角,对角线相等且互相平分;菱形的四条边都相等,对边平行,对角相等,对角线互相垂直平分,每条对角线平分它的一组对角。

  4、请你折?折,观察并填空。(引导学生归纳。)

  (1)菱形是不是中心对称图形?对称中心是_______ 。

  学生回答:菱形是中心对称图形,对称中心为两对角线交点

  (2)是不是轴对称图形?对称轴有几条?_______ 。

  学生回答:菱形是轴对称图形,对称轴有两条。

  5、请你思考。

  识别一个四边形是不是菱形的方法

  (学生的回答不一定很完整,可以多让几个学生补充,逐步完善,最后教师适当的给以点拨。)

  菱形的识别方法。

  (1)四条边相等的四边形是菱形。

  (2)邻边相等的平行四边形是菱形。

  (3)对角线互相垂直的平行四边形是菱形。

  三、应用举例。

  例1如图,在菱形ABCD中,∠ BAD=2 ∠ B,试说明△ ABC是等边三角形。

  此题要求学生尝试说出每一步的根据是什么,用以培养他们的逻辑思维能力和数学说理能力。

  四、巩固练习。

  在菱形ABCD中,对角线AC与BD相交于点O,已知AB=5,OA=4,OB=3,求这个菱形的周长与两条对角线的长度。(写出解答过程。)

  (组内互相检查,指出存在问题。)

  五、拓展延伸。

  用你认为最简洁的方法画一个菱形。(简要叙述一下步骤。)

  六、课堂小结。

  请你写一写今天学习了哪些内容?(写完后互相检查、补充。)

  七、布置作业。

  补充作业

  3 、正方形

  教学目标

  1、探索并掌握正方形的概念及其特殊的性质。

  2、学会识别正方形。

  3、在观察、操作、推理、归纳等探索过程中,发展学生的合情推理能力,进一步培养学生数学说理的习惯与能力。

  教学重难点

  重点:正方形特殊特征与性质的探索过程。

  难点:数学说理能力的培养。

  教学准备

  正方形纸张、剪刀。

  教学过程

  一、提问。

  观察正方形有哪些特征?

  边_________角__________对角线_________ 。

  进而导入课题:正方形。

  二、探索,概括。

  1、探索。

  观察正方形是否轴对称图形?是否中心对称图形?

  正方形可以看作为_______的菱形;

  正方形可以看作为_______的矩形。

  (让学生探索、讨论,培养学生的合作能力与意识,也可以指名学生讲讲他的发现。)

  2、概括。

  正方形是中心对称图形,也是轴对称图形。

  正方形可以看作为有一个角是直角的菱形;

  正方形可以看作为有一组邻边相等的矩形。

  三、应用举例。

  例3如图,在正方形ABCD中,求∠ ABD 、∠ DAC 、∠ DOC的度数。

  (此题要求学生尝试说出每一步的根据是什么,用以培养他们的逻辑思维能力和数学说理能力。)

  四、巩固练习。

  1、如果要用给定长度的篱笆围成一个最大面积的四边形区域,那么应当把这区域围成怎样的四边形?

  2、在下列图中,有多少个正方形?有多少个矩形?

  五、看谁做的又快又正确?

  1、用纸剪出一个正方形,与你的同伴比一比,看谁又快又正确?

  六、课堂小结。

  这节课你有什么收获?学到了什么?有什么疑问提出来?

  七、布置作业。

  补充作业

初中数学平行四边形教案11

  教学目标:

  1、通过拉一拉长方形,初步认识并了解平行四边形的特点。

  2、通过围一围、画一画,剪一剪,学会会在方格纸上画平行四边形。

  教学准备:两个长方形相框(相同大小,可活动)

  教学过程:

  一、动手探索,多角度认识:

  1、我们学了四边形,怎么判断一个图形是不是四边形呢?

  (板书:四边形四条直边四个角)

  2、观察老师做的长方形框架,这是不是四边形?它还有什么特征?(对边相等,有4个直角)

  3、拉动长方形框架,发生了什么变化?(角、边、形)

  4、揭题:这就是我们今天要学的——平行四边形。(完善板书)

  5、看一看,拉一拉,你发现了什么?(对边相等,没有直角……)

  是不是所有的平行四边形都有这样的特征呢?在书上的平行四边形上动手量一量。

  6、生活中有这样的图形吗?

  1)出示主题图:为什么移动门要设计成这样的形状呢?

  2)展示三角形的稳定性和平行四边形的不稳定性。通过拉一拉的活动。

  7、围一个平行四边形。

  闭眼想一想,平行四边形是什么样子的?请一个学生在讲台的钉子板上围一围。

  8、你能在方格图上画一个平行四边形吗?(说出你是怎么画的)

  鼓励优生多画几个不同的四边形。

  9.“猜猜它是谁”:

  1)我的背后躲着一个平行四边形,可以看见一条长边是5厘米,一条短边是3厘米,你能猜出另外一条长边和短边分别是几厘米吗?为什么?

  2)我的背后躲着一个四边形,它对边相等,没有直角,请问它是什么图形?四、创设情境,欣赏平行四边形。

  在哪些地方可以见到平行四边形呢?

  成功之处:平行四边形是几何图形中,学生即将认识一个新朋友,怎样学生学会简单辨认平行四边形呢?通过复习长方形,对长方形特征的复习,再拉一拉,让学生观察什么变了?什么不变?再给这种新图形命名,我认为还是符合学生认知规律的。接着让量一量书上的平行四边形的边和角,概括出平行四边形的特点。然后,学生示范围一围,画一画加深对平行四边形的认知。其次,对比拉三角形和平行四边形得出不稳定性。最后通过观察例举,猜一猜巩固认知。

  不足之处:因为我担心学生不能备好学具,于是一手操办。学具准备不充分,在课堂上学生只能通过观察,利用对长方形旧知的'迁移,认识平行四边形及其特点。围一围的操作范围小,马上进入画一画环节。发现绝大多数学生就开始画长方形,并没有把长方形与平行四边形区分开来。于是“没有直角的平行四边形”成了学生画图的要求,但是在要求之后,部分学生都排除了水平画法和垂直画法,都在方格纸上画倾斜的平行四边形,这样难度大幅度增加了。疑惑:这是在哪里出了岔子了?幸好在说你是怎么画的?通过比较让学生了解怎样简便的画出一个平行四边形,同时鼓励能正确得画出倾斜的平行四边形。但是,又多占据了一些课堂时间。总缺乏课堂练习。

  重新设计应该注意的地方:让每个学生都参与围平行四边形的活动中,在学生画平行四边形之前,应让学生说说画时应注意的地方,同时在学生画时出现不规则的地方让学生展开讨论。预设出学生画时可能出现的错误,先画两条与方格重合的现,再画两条斜边。画完后总结最佳画法:先把直边画对了,斜边再连线就可以了。

初中数学平行四边形教案12

  4.2.(一)

  教材分析:

  本节课是紧接《平行四边形的性质》一节,其探究的主要内容是“两条对角线互相平分的四边形是平行四边形”,以及“一组对边平行且相等的四边形是平行四边形”这两种判别方法。它是在学生掌握了平行线、三角形全等及简单图形的平移和旋转、平行四边形的定义、性质等基础性知识上学习的。在教学内容上起着承上启下的作用。首先,在探索方式上运用了学习机“图形计算器”的度量、旋转、平移等方法、其次、在探究判别条件的合理性上和运用判别条件时除用到了全等三角形的相关知识,还可以通过直观体验的方法来获取信息。其次,平行四边形的判别条件是研究特殊的平行四边形的基础;再有,平行四边形判别条件的探究模式从方法上为)(研究特殊的平行四边形奠定了基础。并且,本节内容还是学生运用化归思想的良好素材。教材从学生年龄特征、文化知识的实际水平出发,先让学生动手做,动脑思考,然后与同伴交流、利用学习机“图形计算器”探索、总结归纳,升华得出平行四边形的判别方法,再用这些方法去对四边形是否是平行四边形进行判别。这样的安排使抽象的推理让学生更易于接受,并能在整个教学过程中真正享受到探索的乐趣。

  教学目标:

  1.经历并了解平行四边形判别方法的探索过程,使学生逐步掌握说理的基本方法。

  探索并掌握平行四边形的两种判别条件,能根据判别方法进行相关的应用。

  2.在探索过程中发展学生的合理推理意识、主动探究的`习惯。

  体验数学活动来源于生活又服务于生活,提高学生的学习兴趣。

  3.在操作学习机的“图形计算器”活动过程中,加深师生的情感。培养学生的观察能力,并提高学生的学习兴趣。在学习过程中,来体会平行四边形的图形美和内在美。同时使“图形计算器”真正成为学生的学具。

  教学重点:探索并掌握平行四边形的判别条件。(一组对边平行且相等的四边形是平行四边形;两条对角线互相平分的四边形是平行四边形)。

  教学难点:经历平行四边形判别条件的探索过程,发展学生的合情推理意识、主动探索的习惯,逐步掌握说理的基本方法。

  教学媒体设计:

  为了实现教学目标、优化教学过程、突破教学难点、充分调动学生的各种感官、吸引注意力,课堂上主要采用诺亚舟学习机的“图形计算器”进行辅助教学,通过大屏幕媒体展示教学和学生对“图形计算器”充分利用,使教学过程与知识发展过程和思维过程三者同步,分别在创设情境;观察、探索;理顺、归纳;运用、提高;回顾、反思;布置作业环节都将发挥“图形计算器”的实战功能、让学生真正做到课上听懂、理解透彻。将学生的课堂练习成果进行快速展示,从而节约时间,提高课堂效率。

  教学过程设计:(t—教师,s—学生)

  问题与情境师生行为设计意图

  活动板块1

  前面我们已经学习了平行四边形概念和性质,我们来复习:

  (1)平行四边形概念。

  (2)平行四边形性质。

  (3)如果我们自己作平行四边形,你是如何说明理由的?

  进而得出需进行平行四边形判别条件的探究。

  先由学生根据自主做图的基础上,进行猜想,具备什么条件的四边形是平行四边形,将猜想记录到练习本上。利用学习机的“图形计算器”将你的猜想进行验证。

  活动板块2

  在学生合作探究基础上,对小组活动及时评价、引导。

  同时观察是否有小组已经经过猜想、通过实验验证的方法获得了平行四边形判别条件。

  适时地将学生的探究方向指引到通过平行四边形的性质来反向探究平行四边形判别条件,进而得出平行四边形判别方法。

  适时地选出一小组成员在台前利用教师学习机的“图形计算器”通过大屏幕演示小组成果…

  得出平行四边形判别方法:两条对角线互相平分的四边形是平行四边形或(一组对边平行且相等的四边形是平行四边形)。

  活动板块3

  学生继续活动,探究平行四边形判别的其他方法。

  适时地将学生的探究方向指引到通过平行四边形的性质来反向探究平行四边形判别条件,进而得出平行四边形判别方法。

  适时地选出一小组成员在台前利用教师学习机的“图形计算器”通过大屏幕演示小组成果…

  得出平行四边形判别方法:两条对角线互相平分的四边形是平行四边形或(一组对边平行且相等的四边形是平行四边形)。

  活动板块4

  通过小结后,借助大屏幕展示学习机的“图形计算器”中预先保存的练习题。

  活动板块5

  小结及学生谈感受、体会、特别是对学习机的使用情况谈体会和认识。

  活动板块6

  课后思考题:(将问题的探究记录在学习机的“图形计算器”中保存)

  1.平行四边形abcd中,在对角线所在直线上取ae、cf,使ae=cf,连接be、df,试说明:be=df。

  2.利用学习机的“图形计算器”制作一组以平行四边形为基本图案的美丽图形。

  t:提出复习概念和性质。

  s:思考,回答结合一起

  复习。

  s:思考、作图、自主参与交流。

  t:引导、合作,对小组活动及时评价。

  t:注意s猜想、验证过程中出现哪些问题,他们想如何解决所遇到的问题。

  t:引导发展s的探究意识和合作中团结解决所遇到的各种问题。

  t:引导和补充。关注学生是否交流方法,互动学习。能否发现问题,研究并解决问题

  s:互动学习,提出论证方法。

  t:引导、合作,对回答问题及时评价。

  s:通过对学具学习机的“图形计算器”的自主探求,获得平行四边形判别方法。

  s:小组成员合作,其他学生观察、思考得出探究的正确方向。

  s:互动学习,提出论证方法。

  t:引导、合作,对回答问题及时评价。

  t:关注学生是否交流方法,互动学习。能否发现问题,研究并解决问题

  s:小组成员合作,其他学生观察、思考得出探究的正确方向。

  t:根据授课情况,板演解题过程,或学生口述解题过程。s:板演或口述。

  t:演示引例,解决具体问题中感受应用的价值。

  s:畅所欲言

  t:进行补充,总结。

  s:小组一名同学记录问题题干,另一名同学在学习机的“图形计算器”上记录下图形。课后将问题的探究记录在学习机的“图形计算器”中保存

  立足于旧知识的基础上,引导学生的注意力。

  在情境引入中充分使用学习机“图形计算器”来促进学生学习过程。

  为全体学生提供借助“图形计算器”为基础平台,使全体学生都有信心学习数学知识,调动学生积极性,主动地参与到课程过程中来,树立学习的信心。为教学目标1服务。

  通过全体学生借助“图形计算器”,获得直观的平行四边形判别方法的印象,通过小组间的合作探究,更容易将所获得的信息结论加以认识、记忆。

  学生在学习过程中,对学习机的“图形计算器”的自主发现时,大胆创新,想解决问题。教师起引导者作用,引入符号语言,使学生轻松愉悦地接受并获取经验为今后学习特殊四边形打基础。达成目标1。

  直觉思维能力是数学注意培养发展的能力之一,它有利于人的探究能力的成长和创新精神培养。

  提引问题时教师起组织者作用,使学生感受师生合作、生生合作的愉快,不断的对学具学习机的“图形计算器”的自主探求,获得数学发展,激发学生的学习热情,调动学生学习自主性。共同发展,达成目标1.2。

  在学生最近的知识发展区建立新的生长点,解释应用与拓展的学习主题,在本活动中得以体现。达成教学目标2。

  创设一个平等和谐的畅谈空间,调动学生的积极性,养成良好的总结习惯,善于从能力,情感、态度等方面关注学生对课堂整体感受,发现集体的力量是无穷的,培养集体主义精神。提供一发展平台,给学生留有学习探索的空间。

  展示提出问题,为下节课的学习提出预想。并利用“图形计算器”探求问题,带来直观体验,同时培养学生的观察能力,并提高学生的学习兴趣。

初中数学平行四边形教案13

  教学目标

  1.使学生掌握平行四边形的意义及特征,了解其特性,能够正确画出底所对应的高.

  2.通过观察、动手操作,培养学生抽象概括能力和初步的空间观念.

  教学重点

  掌握平行四边形的意义及特征.

  教学难点

  理解平行四边形与长方形、正方形的关系.

  教学过程

  一、复习准备.

  我们已经学过一些几何图形,观察一下这些图形有什么共同特点?

  在明确它们是由四条线段围成的基础上概括出:由四条线段围成的图形是四边形.

  教师提问:我们学过哪些四边形呢?

  学生举例.

  说说哪些物体表面是平行四边形?

  教师出示下图,让学生初步感知平行四边形.

  二、学习新课.

  1.理解平行四边形的意义.

  首先出示一组图形.

  教师提问:这些图形是什么形?它们有什么特征?

  (1)看到这个名称你能想到什么?(板书:平行、四边形)

  教师提问:你认为什么是四边形?你学过的什么图形是四边形的?

  (2)动手测量.

  指名到黑板上用三角板检验一下,每个图形的对边怎样.

  (3)抽象概括.

  根据你测量的结果,能说说什么叫平行四边形吗?

  小组先讨论,再让到黑板上测量的同学说出检验与测量的结果,从而引出平行四边形的确切定义.(板书:两组对边分别平行的四边形叫做平行四边形.)

  教师强调说明:只要四边形每组对边分别平行就能确定它的两组对边相等,因此平行四边形的定义是“两组对边分别平行的四边形”.

  (4)反馈:判断下面图形哪些是平行四边形?【演示课件“平行四边形”,出示反馈练习】

  2.平行四边形的特征和特性.

  (1)教师演示.

  教师拿一个长方形木框,用两手捏住长方形的两个对角,向相反方向拉.引导学生观察两组对边有什么变化?拉成了什么图形?什么没有变?

  学生明确:两组对边边长没有变,变成了平行四边形,四个直角变成了锐角和钝角.

  (2)动手操作.

  学生自己动手,把准备好的长方形框拉成平行四边形,并测量两组对边是否还平行.

  (3)归纳平行四边形特性.

  根据刚才的实验、测量,引导学生概括出:平行四边形具有不稳定性.(板书:易变形)

  (4)对比.

  三角形具有稳定性,不容易变形.平行四边形与三角形不同,容易变形,也就是具有不稳定性.

  这种不稳定性在实践中有广泛的应用.你能举出实际例子来吗?

  (如汽车间的保护网,推拉门、放缩尺等.)

  3.学习平行四形的底和高.

  (1)认识平行四边形的底和高.

  教师边演示边说明:从平行四边形一条边上的一点到对边引一条垂线,这点和垂足之间的线段叫做平行四边形的高.这条对边叫做平行四边形的底.

  (2)找出相应的底和高.【继续演示课件“平行四边形”】

  引导学生观察:图中有几条高?它位相对应的底各是哪条线段?

  使学生明确:从B点画高,它的底是CD;从D点画高,它的底是BC.

  (3)画平行四边形的高.【继续演示课件“平行四边形”】

  教师说明:平行四边形高的画法与三角形画高的.方法基本相同,都用过直线外一点画已知直线的垂线的方法.从一条边上任意一点都可以向它的对边画高,但通常是从一个角的顶点向它的对边画高.这里高要画在平行四边形内,不要求把高画在底边的延长线上.

  ①教师利用长方形框,拉动长方形的边,使其变成不同的平行四边形.(还可以把平行四边形变成长方形)

  引导学生比较长方形和平行四边形的异同点,使学生明确:

  相同点是两组都分别平行,所以长方形也具有平行四边形的特征,也属于平行四边形.不同点是长方形的四个角都是直角,所以把长方形看作是特殊的平行四边形.

  ②引导学生比较正方形和平行四边形的相同点和不同点.

  使学生明确:正方形也是两组对边分别平行,四个角也是直角,正方形也可看作是特殊的平行四边形.因为长方形和正方形都有两组对边分别平行,四个角是直角的共同点,而正方形还有四条边相等的这一特征,因此正方形可看作是特殊的长方形.

  ③这三种图形之间的关系可以用集合图来表示【继续演示课件“平行四边形”】

  三、巩固练习.【继续演示课件“平行四边形”】

  1.判断下列图形哪些是平行四边形?

  2.指出平行四边形的底,并画出相应的高.

  3.在钉子板上围出不同的平行四边形.

  4.数一数下图中有()个平行四边形.

  四、教师小结.

  1.提问:通过今天的学习,你都学会了什么?(平行四边形的意义,特征及特性)

  2.组织学生对所学知识提出质疑,并解疑.

  3.教师提问:我们已学过的长方形、正方形是平行四边形吗?它们有什么关系?(因为长、正方形也具备平行四边形的特点所以长、正方形是特殊的平行四边形)

  五、布置作业.

  1.用一套七巧板拼出不同的平行四边形.

  2.在下面每个平行四边形中分别画出两条不同的高。

初中数学平行四边形教案14

  一、 教学目标

  (一)知识教学点

  1.了解;方程算术解法与代数解法的区别。

  2.掌握:代数解法解简易方程。

  (二)能力训练点

  1.通过代数解法解简易方程的 学习 使学生认识问题头脑不僵化,培养其创造性思维的能力。

  2.通过代数法解简易方程进一步培养学生运算能力和逻辑思维能力。

  (三)德育渗透点

  1.培养学生实事求是的科学态度,用发展的眼光看问题的辩证唯物主义思想。

  2.渗透化“未知”为“已知”的化归思想。

  (四)美育渗透点

  通过用新的方法解简易方程,使学生初步领略 数学 中的方法美。

  二、学法引导

  1.教学方法:引导发现法。注意教学中民主意识和学生的主体作用的体现。

  2.学生学法:识记→练习反馈

  三、重点、难点、疑点及解决办法

  1.重点:代数解法解简易方程。

  2.难点:解方程时准确把握两边都加上(或减去)、乘以(或除以)同一适当的数。

  3.疑点:代数解法解简易方程的依据。

  四、课时安排

  1课时

  五、教具学具准备

  投影仪或电脑、自制胶片。

  六、师生互动活动设计

  教师创设情境,学生解决问题。教师介绍新的方法,学生反复练习。

  七、教学步骤

  (一)创设情境,复习导入

  (出示投影1)

  引例:班上有37名同学,分成人数相等的两队进行拔河比赛,恰好余3人当裁判员,每个队有多少人?

  师:该问题如何解决呢?请同学们考虑好后写在练习本上.

  学生活动:解答问题,一个学生板演.

  师生共同订正,对照板演学生的做法,师问:有无不同解法?

  学生活动:回答问题,一个学生板演,其他学生比较两种解法.

  问;这两种解法有什么不同呢?

  学生活动:积极思索,回答问题.(一是列算式的解法,二是列方程的解法).

  师:很好.为了叙述问题方便,我们分别把这两种解法叫做算术解法和代数解法. 小学 学过的应用题可用算术方法也可用代数方法解.有时算术方法简便,有时代数方法简便,但是随着 学习 的逐步展开,遇到的问题越来越复杂,使用代数解法的优越性将会体现的越来越充分,因此,在初中代数课上,将把方程的知识作为一个重要的内容来 学习 .当然,在开始 学习 方程时,还是要从简单的方程入手,即简易方程.引出课题.

  [板书]1.5简易方程

  (二)探索新知,讲授新课

  师:谈到方程,同学们并不陌生,你能说明什么叫方程吗?

  学生活动:踊跃举手,回答问题。

  [板书] 含有未知数的等式叫方程

  接问:你还知道关于方程的其他概念吗?

  学生活动:积极思考并回答。

  [板书] 方程的解;解方程

  追问:能再具体些吗?即什么叫方程的解?什么叫解方程?并举例说明.学生活动:互相讨论后回答.(使方程左右两边相等的未知数的值叫做方程的解;求方程的解的过程叫解方程,例如方程: 是方程的解,求 的过程叫解方程.)

  师:很好.怎样解方程呢?

  例如 解方程

  学生活动:一个学生回答,师板书,并要求学生说出根据。

  解:第一步 ,(把 看作一个数,根据一个加数等于和减去另一个数)

  第二步 (根据一个因数等于积除以另一个因数)

  师:好!这是 小学 学的解方程的方法。在初中代数课上,我们要从另一角度来解,还以上边这个方程为例。

  [板书]

  解:第一步看作方程两边都减去9,得

  第二步看作方程两边都除以3,得

  问:这种解法合理吗?

  学生活动:相互讨论达成共识(合理。因把 代入方程 ,左边=右边,所以 是方程的解)

  【教法说明】先复习 小学 有关方程的几个概念和解法,再提代数解法,形成对比,使学生认识到同一问题可从不同角度去考虑,即培养了发散思维。正是因为认识问题的不同侧面,导致学生感到疑惑,这时让学生自己去检验新方法的合理性,不但可消除疑虑,而且还有助于发展学生的创造能力。

  师:以前的方法只能解很简单的方程,而后者则可以解较复杂的方程,因此更为重要。为了更好的理解和熟悉这种解法,我们共同做例1。

  (三)尝试反馈,巩固练习

  例1 解方程

  问:你认为第一步方程两边应加上(或减去)什么数最合适?为什么?

  学生活动:思考并回答.(师板书)

  问:你认为第二步方程两边应乘以(或除以)什么数最合适?为什么?

  学生活动:思考并回答(师板书)

  解:方程两边都加上5,得

  ,

  方程两边都乘以2,得

  ,

  x =32

  问:这个结果正确吗?请同学们自己检验.

  学生活动:练习本上检验并回答问题.(正确)

  师:这种新方法解方程时,第一步目的是什么?第二步目的`是什么?从而确定出该加上(或减去)怎样的数,该乘以(或除以)怎样的数更合适.

  学生活动:回答这两个问题.

  【教法说明】虽然解方程的过程由教师板书,但整个思路是由学生形成的,使新方法在学生头脑中越来越清晰,直到真正认识并掌握它,这样也体现了学生的主体性,由“学会”型向“会学”型转化,对培养学生的思维能力很有帮助.

  师:上题在我们共同努力下得以解决,下面看你们自己的表现怎样?

  例2? 解方程 。

  学生活动:在练习本上做,一个学生板演.

  师生共同订正.

  师:这里虽不要求同学们检验,但今后希望同学们养成自我检查的良好习惯.

  【教法说明】通过例2的教学训练学生的判断能力及运算能力,树立矛盾转化思想.

  (四)变式训练,培养能力

  (出示投影2)

  1.(口答)解下列方程

  (1) ;  (2) ;

  2.判断,并说明理由

  (1) 不是方程( )

  (2) 与 的解都是 ( )

  (3)不同方程的解一定不同( )

  4.求 使 的值等于27。

  学生活动:1、2题口答,3、4题在练习本上书写,可互相讨论,3、4题师巡回指导。

  【教法说明】1题让学生困难同学回答,增强自信心;2题澄清模糊认识,可充分讨论,让学生各抒已见;3题较1题稍复杂,一是让学生体会新解法的优越性,二是培养学生观察分析解决问题的能力;4题其实也是解方程,目的是开阔学生思路,培养学生勇于探索、大胆求异的创新精神。

  (五)归纳小结

  (由学生归纳)

  1.按照新方法解方程,一般采用下面两点:

  (1)方程两边都加上(或减去)同一适当的数;

  (2)方程两边都乘以(或除以)同一适当的数。

  2.为了保证运算准确,养成检验的习惯。

  八、随堂练习

  1.选择题

  (1)在(1) ;(2) ;(3) ;(4) 中方程有( )

  A.1个 B.2个 C.3个 D.4个

  (2)2是( )方程的解

  A. B.

  C. D.

  2.解方程

  3.求 ,使 与 互为倒数。

  九、布置作业

  (一)必做题:课本第31页A组1.(2)(4)、 2.(1)(3)(5)

  (二)选做题:思考课本B组1、2。

  十、 板书设计

  附:1.5? 简易方程

  随堂练习答案

  1.B? C.  2. 3.

  作业答案

  探究活动

  甲、乙二人从相距30m的两地同向而行,甲每秒走7m,乙每秒走6.5m,如果甲先出发1秒钟后,乙才出发,求甲出发后几秒钟追上乙?

  解法(-)设甲出发后 秒追上乙,则甲走的路程为 m,乙比甲晚1秒钟出发,乙少走1秒钟,此时,乙走的路程为 m,甲追上乙表示甲比乙多走30m。根据题意列出方程是:

  解得 (秒)

  答:甲出发后47秒追上乙.

  解法(二)设甲出发后 秒追上乙,甲先走1秒钟,甲先走了 m,这样甲追上己只需多走 (m).这时甲、乙二人都走了( )秒,甲走的路程为 m,乙走的路程为 m,乙比甲走的路程少 (m),根据题意列出方程是:

  解得 (秒)

  答:甲出发后47秒追上乙.

  解法(三)设已出发后 秒,甲追上乙,因为甲先走1秒,所以甲走了 ,乙走了 秒,甲走的路程比已走的路程多30m,依据此等量关系列出方程为:

  解得 秒

  甲走的时间为 (秒)

  答:甲出发后47秒追上乙.

初中数学平行四边形教案15

  教学目标

  1.能解简易方程,并能用简易方程解简单的应用题。

  2.初步培养学生方程的思想及分析解决问题的能力。

  教学重点 和难点

  重点:简易方程的解法和根据实际问题列出方程。

  难点:正确地列出方程。

  课堂 教学过程 设计

  一、从学生原有的认知结构提出问题

  1.针对以往学过的一些知识,教师请学生回答下列问题:

  (1)什么叫等式?等式的两个性质是什么?

  (2)下列等式中x取什么数值时,等式能够成立?

  2.在学生回答完上述问题的基础上,引出课题

  在 小学 学习 方程时,学生们已知有关方程的三个重要概念,即方程、方程的解和解方程.现在 学习 了等式之后,我们就可以更深刻、更全面 地理 解这些概念,并同时板书课题:简易方程.

  二、讲授新课

  1.方程

  在等式4+x=7中,我们将字母x称为未知数,或者说是待定的数.像这样含有未知数的等式,称为方程.并板书方程定义.

  例1? (投影)判断下列各式是否为方程,如果是,指出已知数和未知数;如果不是,说明为什么.

  (1)5-2x=1;(2)y=4x-1;(3)x-2y=6;(4)2x2+5x+8.

  分析:本题在解答时需注意两点:

  一是已知数应包括它的符号在内;

  二是未知数的系数若是1,这个省写的1也可看作已知数.

  (本题的解答应由学生口述,教师利用投影片打出来完成)

  2.简易方程

  简易方程这一小节的前面主要是复习、归纳 小学 学过的 有关方程的基本知识,提出了算术解法与代数解法的说法,以便以后逐步讲述代数解法的优越性。

  例2 解下列方程:

  分析 方程(1)的左边需减去 ,根据等式的性质(2),必须两边同时减去 ,得 ,方程的左边需要乘以3,使 的系数化为1,根据等式的性质(3),必须两边同时乘以3,得 ,方程(2)的解题思路与(1)类似。

  解(1)方程两边都减去 ,得

  两边都乘以3,得 。

  (2)方程两边都加上6,得 。

  方程两边都乘以 ,得 ,即 。

  注意:(1)根据方程的解的概念,我们可以将所得结果代入原方程检验,如果左边=右边,说明结果是正确的,否则,左边≠右边,说明你求得的x的值,不是原方程的解,肯定计算有错误,这时,一定要细心检查,或者再重解一遍.

  (2)解简易方程时,不要求写出检验这一步.

  例3 甲队有54人,乙队有66人,问从甲队调给乙队几人能使甲队人数是乙队人数的 ?

  分析此题必须弄清:

  一、甲、乙两队原来各有多少人;

  二、变动后甲、乙两队各有多少人(注意:甲队减少的人数正是乙队增加的人数);

  三、题中的等量关系是:

  变动后甲队人数是乙队人数的 ,即变动后甲队人数的3倍等于乙队人数.

  解? 设从甲队调给乙队x人,

  则变动后甲队有 人,乙队有 人,根据题意,得:

  答:从甲队调给乙队24人。

  三、课堂练习 (投影)

  1.判断下列各式是不是方程,如果是,指出已知数和未知数;如果不是,说明为什么.

  (1)3y-1=2y;? (2)3+4x+5x 2 ;? (3)7×8=8×7? (4)6=0.

  2.根据条件列出方程:

  (l)某数的一半比某数的3倍大4;

  (2)某数比它的平方小42.

  3.检验下列各小题括号里的数是不是它前面的方程的解:

  四、师生共同小结

  1.请学生回答以下问题:

  (1)本节课 学习 了哪些内容?

  (2)方程与代数式,方程与等式的区别是什么?

  (3)如何列方程?

  2.教师在学生回答完上述问题的'基础上,应指出:

  (1)方程、等式、代数式,这三者的定义是正确区分它们的唯一标准;

  (2)方程的解是一个数值(或几个数值),它是使方程左、右两边的值相等的未知数的值它是根据未知数与已知数之间的相等关系确定的.而解方程是指确定方程的解的过程,是一个变形过程.

  五、作业

  1.根据所给条件列出方程:

  (1)某数与6的和的3倍等于21;

  (2)某数的7倍比某数大5;

  (3)某数与3的和的平方等于这数的15倍减去5;

  (4)矩形的周长是40,长比宽多10,求矩形的长与宽;

  (5)三个连续整数之和为75,求这三个数.

  2.检验下列各小题括号里的数是否是它前面的方程的解:

  (3)x(x+1)=12,(x=3,x=4).

【初中数学平行四边形教案】相关文章:

【必备】平行四边形教案四篇05-19

关于平行四边形教案三篇05-21

【精品】平行四边形教案3篇05-21

初中数学教学反思04-07

初中数学教学心得03-29

初中数学教学总结04-25

初中数学数轴说课稿06-02

初中数学教学心得01-04

初中数学教学反思09-25