初三数学教学计划

时间:2024-10-27 20:36:12 教学计划 我要投稿

初三数学教学计划

  日子在弹指一挥间就毫无声息的流逝,很快就要开展新的工作了,是时候写一份详细的计划了。拟起计划来就毫无头绪?以下是小编精心整理的初三数学教学计划,仅供参考,欢迎大家阅读。

初三数学教学计划

初三数学教学计划1

  一、教学安排

  第1--2周 反比例函数

  第2--4周 锐角三角函数

  第5周 投影与视图和本期内容测试

  第6周 复习七年级数学

  第7--8 周 复习八年级数学

  第9--10周 复习九年级数学

  第11-12周 专题复习和中考模拟测试

  第13周 查漏补缺,中考考前培训

  二、在教学过程中抓住以下几个环节

  (1)认真备课。认真研究教材及考纲,明确教学目标,抓住重点、难点,精心设计教学过程,重视每一章节内容与前后知识的联系及其地位,重视课后反思,设计好每一节课的师生互动的细节。

  (2)上好课:在备好课的基础上,上好每一个40分钟,提高40分钟的效率,让每一位同学都听的懂,对部分基础较差者要循序渐进,以选用的例题的难易程度不同,使每个学生能“吃”饱、“吃”好。

  (3)注重课后反思,及时的将一节课的得失记录下来,不断积累教学经验。

  (4)批好每一次作业:作业反映了一节课的效果如何,学生对知识的掌握程度如何,认真批改作业,使教师能迅速掌握情况,对症下药。

  (5)按时检验学习成果,做到单元测验的有效、及时,测验卷子的批改不过夜。考后对典型错误利用学生想马上知道答案的心理立即点评。

  (6)及时指导、纠错:争取面批、面授,今天的任务不推托到明日,争取一切时间,紧紧抓住初三阶段的每分每秒。课后反馈。落实每一堂课后辅助,查漏补缺。精选适当的练习题、测试卷,及时批改作业,发现问题及时给学生面对面的指出并指导学生搞懂弄通,不留一个疑难点,让学生学有所获。

  (7)积极与其它老师沟通,加强教研教改,提高教学水平。

  (8)经常听取学生良好的合理化建议。

  (9)以“两头”带“中间”战略思想不变。

  (10)深化两极生的训导。

  三、不断钻研业务,提高业务能力及水平。

  积极参加业务学习,看书、看报,参加学校组织的培训,使之更好的为基础教育的改革努力,掌握新的技能、技巧,不断努力,取长补短,扬长避短,努力使教学更开拓,方法更灵活,手段更先进。

  四、分层辅导,因材施教

  对本年级的学生实施分层辅导,利用优胜劣汰的方法,激励学生的学习激情,保证升学率及优良率,提高及格率。对部分差生实行义务补课,以提高成绩。

  五、严格按照教学进度,有序的进行教学工作。

  用心去做,从细节去做,尽自己追大的努力,发挥自己最大的`能力去做好初三毕业班的教学工作。

  六、强化复习指导

  分二阶段复习:

  (一)第一阶段全面复习基础知识,加强基本技能训练让学生全面掌握初中数学基础知识,提高基本技能,做到全面、扎实、系统,形成知识网络。 这个阶段的复习目的是让学生全面掌握初中数学基础知识,提高基本技能,做到全面、扎实、系统,形成知识网络。

  1、重视课本,系统复习。现在中考命题仍然以基础题为主,有些基础题是课本上的原题或改造,后面的大题虽是“高于教材”,但原型一般还是教材中的例题或习题,是教材中题目的引伸、变形或组合,所以第一阶段复习应以课本为主。

  2、 按知识板块组织复习。把知识进行归类,将全初中数学知识分为十一讲:第一讲数与式;第二讲 方程与不等式;第三讲函数;第四讲统计与概率;第五讲基本图形;第六讲 图形与变换;第七讲角、相交线和平行线;第八讲 三角形;第九讲 四边形;第十讲三角函数学;第十一讲圆 。 复习中由教师提出每个讲节的复习提要,指导学生按“提要”复习,同时要注意引导学生根据个人具体情况把遗忘了知识重温一遍,边复习边作知识归类,加深记 忆,注意引导学生弄清概念的内涵和外延,掌握法则、公式、定理的推导或证明,例题的选择要有针对性、典型性、层次性,并注意分析例题解答的思路和方法。

  3、重视对基础知识的理解和基本方法的指导。基础知识即初中数学课程中所涉及的概念、公式、公理、定理等。要求学生掌握各知识点之间的内在联系,理清知识 结构,形成整体的认识,并能综合运用。例如一元二次方程的根与二次函数图形与x轴交点之间的关系,是中考常常涉及的内容,在复习时,应从整体上理解这部分 内容,从结构上把握教材,达到熟练地将这两部分知识相互转化。又如一元二次方程与几何知识的联系的题目有非常明显的特点,应掌握其基本解法。 中考数学命题除了着重考查基础知识外,还十分重视对数学方法的考查,如配方法,换元法,判别式法等操作性较强的数学方法。在复习时应对每一种方法的内涵,它所适应的题型,包括解题步骤都应熟练掌握。

  4、重视对数学思想的理解及运用。如函数的思想,方程思想,数形结合的思想等。

  (二)第二阶段综合运用知识,加强能力培养,构建初中数学知识结构和网络,从整体上把握数学内容,以构建初中数学知识结构和网络为主,从整体上把握数学内容,提高能力。

  培养综合运用数学知识解题的能力,是学习数学的重要目的之一。这个阶段的复习目的是使学生能把各个讲节中的知识联系起来,并能综合运用,做到举一反三、触类 旁通。这个阶段的例题和练习题要有一定的难度,但又不是越难越好,要让学生可接受,这样才能既激发学生解难求进的学习欲望,又使学生从解决较难问题中看到 自己的力量,增强前进的信心,产生更强的求知欲。第二阶段就是第一阶段复习的延伸和提高,应侧重培养学生的数学能力。这一阶段尤其要精心设计每一节复习 课,注意数学思想的形成和数学方法的掌握。初中总复习的内容多,复习必须突出重点,抓住关键,解决疑难,这就需要充分发挥教师的主导作用。而复习内容是学 生已经学习过的,各个学生对教材内容掌握的程度又各有差异,这就需要教师千方百计地激发学生复习的主动性、积极性,引导学生有针对性的复习,根据个人的具 体情况,查漏补缺,做知识归类、解题方法归类,在形成知识结构的基础上加深记忆。除了复习形式要多样,题型要新颖,能引起学生复习的兴趣外,还要精心设计 复习课的教学方法,提高复习效益。

初三数学教学计划2

  一、基本情况:

  本学期我担任九年级159班的数学教学工作。共有学生48人,我深感教育教学的压力很大,在本学期的数学教学中务必精耕细作。使用的教材是新课程标准实验教材《湘教版数学九年级上册》,如何用新理念使用好新课程标准教材?如何在教学中贯彻新课标精神?这要求在教学过程中具有创新意识、每一个教学环节都必须巧做安排。为此,特制定本计划。

  二、指导思想:

  以党和国家的教育教学方针为指导,按照九年义务教育数学课程标准来实施,其目的是教书育人,使每个学生都能够在数学学习过程中获得最适合自己的发展。通过初三数学的教学,提供参加生产实践和进一步学习所必需的数学基础知识与基本技能,进一步培养学生的运算能力、思维能力和空间想象能力,能够运用所学知识解决实际问题,培养学生的数学创新意识、良好个性品质以及初步的唯物主义观。

  三、教学内容:

  本学期所教初三数学包括第一章一元二次方程,第二章命题定理与证明,第三章 解直角三角形,第四章 相似形,第五章概率的计算。

  四、教学目的:

  教育学生掌握基础知识与基本技能,培养学生的逻辑思维能力、运算能力、空间观念和解决简单实际问题的能力,使学生逐步学会正确、合理地进行运算, 逐步学会观察分析、综合、抽象、概括。会用归纳演绎、类比进行简单的推理。使学生懂得数学来源与实践又反过来作用于实践。提高学习数学的兴趣,逐步培养学 生具有良好的学习习惯,实事求是的态度。顽强的学习毅力和独立思考、探索的新思想。培养学生应用数学知识解决问题的能力。

  知识技能目标:掌握一元二次方程的有关概念;会解一元二次方程;能建立一元二次方程的模型解决实际问题;理解命题、定理、证明等概念;能正确写出证明;掌握锐角三角函数的性质;理解直角三角形的性质;能运用三角函数及勾股定理解直角三角形;掌握相似三角形的概念、性质及判定方法; 掌握概率的计算方法;理解概率在生活中的应用。

  过程方法目标:培养学生的观察、探究、推理、归纳的能力,发展学生合情推理能力、逻辑推理能力和推理认证表达能力,提高知识综合应用能力。

  态度情感目标:进一步感受数学与日常生活密不可分的联系,同时对学生进行辩证唯物主义世界观教育。

  通过讲授证明的有关知识,使学生经历探索、猜测、证明的过程,进一步发展学生的推理论证能力,并能运用这些知识进行论证、计算、和简单的作图。进

  一步掌握综合法的证明方法,能证明与三角形、平行四边形、等腰梯形、矩形、菱形、以及正方形等有关的性质定理及判定定理,并能够证明其他相关的结论。在解直角三角形和相似图形这两章时,通过具体活动,积累数学活动经验,进一步增强学生的动手能力发展学生的空间思维。在教学概率的计算时让学生进一步体会概率是描述随机现象的数学模型。

  在教学一元二次方程这一章时,让学生了解一元二次方程的各种解法,并能运用一元二次方程和函数解决一些数学问题逐步提高观察和归纳分析能力,体验数学结合的数学方法。同时学会对知识的归纳、整理、和运用。从而培养学生的思维能力和应变能力。

  五、教学重点、难点

  《一元二次方程》的重点是1、掌握一元二次方程的多种解法;2、列一元二次方程解应用题。难占是1、会运用方程和函数建立数学模型,鼓励学生进行探索和交流,倡导解决问题策略的多样化。《命题定理与证明》的重点是1、要求学生掌握证明的基本要求和方法,学会推理论证;2、探索证明的思路和方法,提倡证明的多样性。难点是1、引导学生探索、猜测、证明,体会证明的必要性;

  2、在教学中渗透如归纳、类比、转化等数学思想。《解直角三角形》的重点是通过学习和实践活动探索锐角三角函数,在直角三角形中根据已知的边与角求出未知的.边与角。难点是运用直角三角形的有关知识解决实际问题。《相似图形》的重点是相似三角形的性质与判定。难点是综合运用三角形、四边形等知识进行推理论证,正确写出证明。《概率的计算》的重点是通过实验活动,理解事件发生的频率与概率之间的关系,体会概率是描述随机现象的的数学模型,体会频率的稳定性,掌握概率的计算方法。难点是注重素材的真实性、科学性、以及来源渠道的多样性,理解试验频率稳定于理论概率,必须借助于大量重复试验,从而提示概率与统计之间的内存联系。

  六、教学措施:

  1、认真研读新课程标准,钻研新教材,根据新课程标准及教材适度安排教学内容,认真上课,批改作业,认真辅导,认真制作测试试卷。

  2、激发学生的兴趣,给学生介绍数学家,数学史,介绍相应的数学趣题,给出数学课外思考题,激发学生的兴趣。

  3、引导学生积极参与知识的构建,营造自主、探究、合作、交流、分享发现快乐的课堂。

  4、引导学生积极归纳解题规律,引导学生一题多解,多解归一,培养学生透过现象看本质的能力,这是提高学生素质的根本途径之一,培养学生的发散思维,让学生处于一种思如泉涌的状态。

  5、培养学生良好的学习习惯,陶行知说:教育就是培养习惯,有助于学生稳步提高学习成绩,发展学生的非智力因素,弥补智力上的不足。

  6、教学中注重数学理论与社会实践的联系,鼓励学生多观察、多思考实际生活中蕴藏的数学问题,逐步培养学生运用书本知识解决实际问题的能力,重视实习作业。指导成立课外兴趣小组,开展丰富多彩的课外活动,带动班级学生学习数学,同时发展这一部分学生的特长。

  7、开展分层教学,布置作业设置a、b、c三类分层布置分别适合于差、中、好三类学生,课堂上的提问照顾好各个层次的学生,使他们都得到发展。

  8、把辅优补潜工作落到实处,进行个别辅导。

初三数学教学计划3

  一、学生知识现状分析:

  到了初三,在思想方面:学生的人生观、世界观也逐渐的形成,对是非对错有了自己的看法和认识;在知识方面:学生已经有了一定的数学基础,具备了一定的学习数学的基本能力,同时,学生两极分化的想象也日趋严重,一些学生只要教师稍微指导就可以学的不错,也有一些学生自己管理自己的能力较差,需要教师的家长的管理和督促。但还有一些学生,对自己缺乏信心,失去了学习的积极性。

  二、本学期教学目标与要求:

  1、本学期将要完成证明一、证明二、一元二次方程、反比例函数、频率与概率这五章的学习同时还要为学生步入初四毕业班打下坚实的基础,对学生的要求:

  2、能主动自觉的上好课,学好知识。做到当堂的内容当堂消化。

  3、掌握科学的学习数学的方法,让每个学生都能在原来的基础上得到提高和进步。

  4、要求学生能系统的学习数学知识,是学生对数学知识的体统化的重要性有更深刻的认识。

  5、进一步加强对学生的自学能力的培养,让学生不但会学,还要会“教”

  三、教材简析(重点、难点)

  本册书的重点是,

  1、能在原来的知识的基础上进一步掌握三角形、四边形的相关定理公里和证明。

  2、会解一元二次方程并学习方程的应用。

  3、反比例函数的性质与应用。

  4、进一步用生活中的数据去进行实际应用。

  四、本学期提高教学质量的措施:

  1、继续抓好课堂教学。

  2、继续使用讲学案,争取让学生能主动学习。

  3、加强集体备课发挥集体优势

  4、不断的进行业务学习补充自己的知识,让自己不断进步。

  五:本学期提高教学质量的.教研课题:

  1、继续探究洋思中学的教学模式结合我们自己的实际情况的课堂教学模式

  2、新课标数学课堂策略的研究

  教学进度表

  周次 日期 教学内容 备注

  一 2.25----2.29 全等三角形

  计划虽然制定好了,但是在具体操作过程中,我们将结合教学的实际情况,灵活掌握教学进度,并时刻根据学生实际掌握的情况及时的调整我们的教学计划,在保证不偏离大方向的基础上,能不断完善我们的教学工作,以教书育人为宗旨,以培养新时代的接班人为己任,以教育部提出的素质教育为准绳,争取把我们的教学工作做到实处,让每个学生都能学到自己应学到的知识。

  二 3.3----3.7 等腰三角形、直角三角形

  三 3.10----3.14 直角三角形、线段的垂直平分线

  四 角分线以及本章复习

  五 3.24----3.28 一元二次方程、配方法解一元二次方程

  六 3.31----4.4 配方法和公式法解一元二次方程

  七 4.7----4.11 一元二次方程的应用

  八 一元二次方程的应用以及本章复习

  九 4.28----5.2 期中复习

  十 5.5----5.9 期中复习

  十一 5.12----5.16 平行四边形、特殊的平行四边形

  十二 特殊的平行四边形、等腰梯形

  十三 5.26----5.30 中位线以及本章复习

  十四 6.2----6.6 反比例函数、反比例函数的图象与性质

  十五 6.9----6.13 反比例函数的应用以及本章复习

  十六 用频率估计概率、用列举法计算概率

  十七 6.23----6.27 生活中的概率问题回顾思考

  十八 6.30----7.4 第十章复习以及期末复习

  十九 7.7----7.11 期末复习以及期末考试

初三数学教学计划4

  一、学生情况分析:

  对八年级的学习情况与期末测试成绩进行分析,可以看出学生已经初步掌握二次根式的运算,能利用一元二次方程来解一般的应用题,对数据的.频数及其分布有了初步的认识,大多数学生能掌握平行四边形与特殊平行四边形的性质与判定,具备了一定的逻辑推理能力。在数学的思维方面,学生正处于形象思维向逻辑抽象思维的过度提升期,教学中提倡数形结合,让学生适当思考部分有利于思维提高的练习,无疑是对学生终身有用的;在学习习惯方面,部分学生的不良习惯得到了纠正,良好的习惯要得到巩固,如独立思考,认真进行总结,及时改正作业等,都应得到强化;在学习兴趣方面,大部分学生对数学学习的积极性较高,但仍有部分学生对数学信心不足,因此开学初要给学生树信心,刚开始起点宜低,讲解宜慢,使学生适应九年级的数学学习。

  二、教材内容分析:

  第一章 反比例函数

  本章的主要内容有反比例函数的概念、解析式、图象、性质及其应用。 本章的重点是反比例函数的图象与性质;反比例函数的图象有两个分支,给反比例函数的性质带来复杂性,是本章教学的难点。本章教学时应渗透数形结合的数学思想。

  第二章 二次函数

  本章的主要内容有二次函数的概念、二次函数的图象、性质和应用,它们在日常生活和生产实际中有着广泛的应用。 本章的重点是二次函数的图象与性质的理解和掌握;二次函数学习过程中所蕴含的数学思想方法,函数图象的特征和变换以及二次函数性质的灵活应用是本章教学的难点。本章教学时要充分运用实例帮助学生正确理解二次函数的概念,体会函数思想。

  第三章 圆的基本性质

  本章的主要内容有圆的有关概念、圆的性质,以及弧长、扇形的面积,圆锥的侧面积和全面积计算。 本章的重点是有关弦、弧、圆心角和圆周角的基本性质;

  圆的基本性质的几个主要定理的探究和证明是本章教学的难点。在本章教学中要使学生从事观察、测量、折叠、平移、推理等活动,注意理论和实践相结合、抽象与直观相结合,分步设疑,巧设阶梯,以达学生理解。

  第四章 样本与数据分析初步

  本章的`主要内容有比例的基本性质、比例线段,相似三角形的条件、性质及其应用,相似多边形和图形的位似。 本章的重点是相似三角形的判定和性质;利用相似三角形解决图形中的比例线段问题是本章教学的难点。

  本章教学时应注意充分运用类比的思想;继续重视观察、实验的方法等。

  三、具体措施:

  1、做好教材钻研工作。认真研读新课程标准,钻研新教材,根据新课程标准,扩充教材内容,认真上课,批改作业,认真辅导,认真制作测试试卷,也让学生学会认真。

  2、兴趣是最好的老师,爱因斯坦如是说。激发学生的兴趣,给学生介绍数学家,数学史,介绍相应的数学趣题,给出相应的数学思考题,激发学生的兴趣。

  3、开展丰富多彩的课外活动,课外调查,数学建模,野外测量,七巧板游戏,课件演示。使学生乐在其中,乐此不疲。

  4、挖掘数学特长生,发展这部分学生的特长,使其冒尖。

  5、开展分层教学实验,使不同的学生学到不同的`知识,使人人能学到有用的知识,使不同的人得到不同的发展,获得成功感,使优生更优,差生逐渐赶上。

初三数学教学计划5

  教学目标:

  1.知识与技能:

  (1)能证明等腰梯形的性质和判定定理

  (2)会利用这些定理计算和证明一些数学问题

  2.过程与方法:

  通过证明等腰梯形的性质和判定定理,体会数学中转化思想方法的应用。

  3.情感态度与价值观:

  通过定理的证明,体会证明方法的多样化,从而提高学生解决几何问题的能力。

  重点、难点:

  重点:等腰梯形的性质和判定

  难点:如何应用等腰梯形的性质和判定解决具体问题。

  教学过程

  (一)知识梳理:

  知识点1:等腰梯形的性质1

  (1)文字语言:等腰梯形同一底上的两底角相等。

  (2)数学语言:

  在梯形ABCD中

  ∵AD∥BC,AB=CD

  ∴∠B=∠C

  ∠A=∠D(等腰梯形同一底上的两个底角相等)

  (3)本定理的作用:在梯形中常用的添加辅助线——平移腰,可以把梯形化归为一个平行四边形和一个等腰三角形;从而利用平行四边形及等腰三角形的有关性质解决有关问题。

  知识点2:等腰梯形的性质2

  (1)文字语言:等腰梯形的两条对角线相等

  (2)数学语言:

  在梯形ABCD中

  ∵AD∥BC,AB=DC

  ∴AC=BD(等腰梯形对角线相等)

  (3)本定理的作用:利用等腰梯形的性质证明线段相等,以及平移其中一条对角线化梯形为一个平行四边形和一个等腰三角形从而解决有关线段的相等和垂直。

  知识点3:等腰梯形的判定

  (1)文字语言:在同一底上的两个角相等的梯形是等腰梯形。

  (2)数学语言:在梯形ABCD中∵∠B=∠C

  ∴梯形ABCD是等腰梯形(同底上的两个角相等的梯形是等腰梯形)

  (3)本定理的.作用:在梯形中常用添加辅助线——补全三角形把原来的梯形化为两个三角形

  (4)说明:

  ①判定一个梯形是等腰梯形通常有两种方法:定义法和定理法。

  ②判定一个梯形是等腰梯形一般步骤:先判定四边形是梯形,然后再判定“两腰相等”或“同一底上的两个角相等”来判定它是等腰梯形。

  【典型例题】

  例1. 我们在研究等腰梯形时,常常通过作辅助线将等腰梯形转化为三角形,然后用三角形的知识来解决等腰梯形的问题。

  (1)在下面4个等腰梯形中,分别作出常用的4种辅助线(作图工具不限)

  (2)在(1)的条件下,若AC⊥BD,DE⊥BC于点E,试确定线段DE与AD,BC之间的数量关系。并证明你的结论。

  解:(1)略。

  (2)DE=(AD+BC)

  过D作DF∥AC交BC延长线于点F

  ∵AD∥BC,∴四边形ACFD是平行四边形

  ∴AD=CF, AC=DF

  ∵AC=BD

  ∴BD=DF

  又∵AC⊥BD,∴BD⊥DF即△BDF为等腰直角三角形

  ∵DE⊥BF,则DE=BF,

  ∴DE=(BC+CF)=(BC+AD)

  例2. 如图,铁路路基横断面为等腰梯形ABCD,已知路基AB长6m, 斜坡BC与下底CD的夹角为60°,路基高AE为,求下底CD的宽。

  解:过点B作BF⊥CD于F

  ∵四边形ABCD是等腰梯形

  ∴BC=AD

  ∵BF=AE,BF⊥CD,AE⊥CD

  ∵Rt△BCF≌Rt△ADE

  在Rt△BCF中,∠C=60°

  ∴∠CBF=30°

  ∴CF=BC即BC=2CF

  ∴BC2=CF2+BF2

  即∴CF=2

  ∵AB∥CD,BF⊥CD,AE⊥CD

  ∴四边形ABFE是矩形

  ∴EF=AB=6m

  ∴CD=DE+EF+CF=AB+2CF=6+2×2=10(m)

  例3. 已知如图,梯形ABCD中,AB∥DC,AD=DC=CB,AD、BC的延长线相交于G,CE⊥AG于E,CF⊥AB于F

  (1)请写出图中4组相等的线段。(已知的相等线段除外)

  (2)选择(1)中你所写的一组相等线段,说说它们相等的理由。

  解:(1)DG=CG,DE=BF,CF=CE,AF=AE,AG=BG

  (2)证明AG=BG,因为在梯形ABCD中,

  AB∥DC,AD=BC,所以梯形ABCD为等腰梯形

  ∴∠GAB=∠GBA

  ∴AG=BG

  课堂小结:

  本节课的学习要注意转化的思想方法,有关等腰梯形的问题往往通过作辅助线将其转化为更特殊的四边形和三角形,常见办法是平移腰,延长腰,作高分割,平移对角线等方法。

初三数学教学计划6

  一、本课教学内容的本质、地位、作用分析

  本课是人教版《数学》九年级(上)第24章:圆周角(第1课时),是在圆的基本概念和性质以及圆心角概念和性质的基础上对圆周角的性质的探索,圆周角的性质在圆的有关证明、作图、计算中有着广泛的应用,在对圆与其他平面图形的研究中起着桥梁和纽带的作用。

  二、教学目标分析

  根据九年级学生有较强的自我发展的意识,较感兴趣于有“挑战性”的任务等心理特点及新课程标准的学段目标要求,结合学生的实际情况制订以下三个方面的.教学目标:

  1、知识与技能:使学生掌握圆周角的概念、圆周角定理及其推论,能准确运用圆周角定理进行简单的证明和运用,有机渗透"由特殊到一般"的思想、"分类"的思想、"化归"的思想。

  2、过程与方法:引导学生能主动地通过:观察、实验、猜想、再实验、证明圆周角定理,培养学生的合情推理能力、实践能力与创新精神,提高其数学素养。

  3、情感、态度与价值观:创设生活情景激发学生对数学的"好奇心、求知欲";营造"民主、和谐"的课堂氛围,让学生在愉快的学习中不断获得成功的体验。培养学生以严谨求实的态度思考数学。

  三、教学问题诊断

  学生学习新知识过程中可能存在的困难及应对预案:

  学习困难之一: 圆周角定义与辨析。圆周角的两个特征,特别是圆周角的两边要和圆相交,是学生容易忽视的地方。

  应对预案:采用对比教学,对比圆心角的定义,知识迁移得到圆周角的定义,但应强调圆周角的两边要和圆相交。接下来通过一组概念辨析练习题,学生能准确、深入理解圆周角的概念,明确定义中的两个条件缺一不可。

  学习困难之二:圆周角定理的证明。

  圆周角定理的证明中,难点有三处:

  ①圆心与圆周角具有三种不同的位置关系:圆心在圆周角的一边上;圆心在圆周角的内部;圆心在圆周角的外部;

  ②同弧所对的圆周角与圆心角的数量关系的结论;

  ③圆周角定理中三种情形的证明。

  教学应对预案:

  难点①的分散:在学生明确圆周角的概念后,让学生在事先所发学案中动手画圆周角,一方面让学生深入了解圆周角,另一方面让学生在动手操作中体会圆心与圆周角具有三种不同的位置关系,为后面证明中的分类讨论作好铺垫。

  难点②的分散:学生合作交流,通过测量事先所发学案中同弧所对的圆周角与圆心角的度数,探究并猜想它们之间的数量关系,然后教师再利用电脑测量来验证,让学生进一步明确它们之间的关系,从而得到命题:同弧所对的圆周角等于它所对的圆心角的一半。

初三数学教学计划7

  一、指导思想

  以书之香教育工作计划为指导思想,结合书之香教育一对一辅导的实际,有计划,有目标,有步骤进行辅导教学,时依据考纲和课本,快速提分,设法引导学生,因材施教,调整好生的学习状态,努力提高学生的合格率、平均分,力争在初三升学考试中取得好成绩。

  二、初三上学期的学习形式

  1、重视课本,系统学习。初中数学基础包括基础知识和基本技能两方面。现在中考命题仍然以基础知识题为主,有些基础题是课本上的原题或改造,后面的大题虽是高于教材,但原型一般还是教材中的例题式习题,是教材中题目的引伸、变形或组合,应以课本为主,在上课时必须深钻教材,把书中的内容进行归纳整理,使之形成自己的知识结构。 2、夯实基础,学会思考。在应用基础知识时应做到熟练 、正确、迅速。上课不能只听老师讲,要敢于质疑,积极思考方法和策略,应通过老师的教,自己悟出来,自己学出来,尤其在解决新情景问题的过程中,应感悟出如何正确思考。

  3、重视基础知识的理解和方法的学习。基础知识既是初中所涉及的概念、公式、公理、定理等。掌握基础知识之间的联系,要做到理清知识结构,形成整体知识,并能综合运用,例如:中考涉及的动点问题,既是方程、不等式与函数问题的结合,同时也常涉及到几何中的'相似三角形、比例推导等等。

  三、初三上学期的学习注意的几个问题

  1、扎实地夯实基础。每年中考试题按难度比例,基础分占比例大,因此使每个学生对初中数学知识都能达到理解和掌握的要求,在应用基础知识时能做到熟练、正确和迅速。

  2、中考有些基础题是课本上的原题或改造,必须深钻教材,绝不脱离课本。 3、不搞题海战术,精讲精练。

  4、定期检查学生完成的作业,及时反馈。教师对于作业、练习、测验中的问题,应采用一对一讲授和个别辅导相结合,或将问题渗透在以后的教学过程中等办法进行反馈、矫正和强化。

  5、注重思想教育,不断激发他们学好数学的自信心,并创造条件,让学生体验成功的快乐。

  6、注重对尖子的培养。在他们解题过程中,要求他们尽量走捷径、出奇招、有创意,注重逻辑关系,力求解题完整、完美、以提高中考优秀率。对于接受能力好的同学,培养解题技巧,提高灵活度,使其冒尖。

初三数学教学计划8

  一、指导思想:

  九年级数学以党和国家的教育教学方针为指导,按照九年义务教育数学课程标准来实施的,其目的是教书育人,使每个学都能够在此数学学习过程中获得最适合自已发展的广泛空间。通过九年级数学的教学,提供进一步学习所必需的数学基础知识与基本技能,进一步培养学生的运算能力、思维级力和空间想象能力,能够运用所学知识解决简单的实际问题,培养学生手数学创新意识,良好个性品质以及初步的唯物主义观。

  二、教学内容

  本学期所教九年级数学包括第二十一章《二次根式》,第二十二章《一元二次方程》,第二十三章《旋转》,第二十四章《圆》。第二十五章《概率初步》。代数三章,几何两章。而且本学期要授完下册第二十七章内容。

  三、教学目标

  知识技能目标:掌握二次根式的概念、性质及计算;会解一元二次方程;理解旋转的'基本性质;掌握圆及与圆有关的概念、性质;理解概率在生活中的应用。过程方法目标:培养学生的观察、探究、推理、归纳的能力,发展学生合情推理能力、逻辑推理能力和推理认证表达能力,提高知识综合应用能力。态度情感目标:进一步感受数学与日常生活密不可分的联系,同时对学生进行辩证唯物主义世界观教育。

  四、教学措拖

  1、教学过程中尽量采取多鼓励、多引导、少批秤的教育方法。

  2、教学速度以适应大多学生为主,尽量兼顾后进生,注重整体推进。

  3、新课教学中涉及到旧知识时,对其作相应的复习回顾。

  4、复习阶段多让学生动脑、动手、通过各种习题、综合试题和模拟试题的训练,使学生逐步熟悉各知识点,并能熟练运用。

初三数学教学计划9

  一、指导思想:

  深入研究备课、科学规范施教、认真精细批改、及时总结反思。 1. 教学总原则:降低基点,面向全体;深化内涵,追求高效;拓展延伸,培养能力。 2. 教学总目标:稳定基础,转化边缘,培养优生,促进尖子,争创第一。

  二、学生基本情况:

  从上学期学生期末考试的成绩平均分总体来看,成绩在前面的基础上还有所提高。对优生来说,能够透彻理解知识,知识间的内在联系也较为清楚,对后进生来说,简单的基础知识还不能有效的掌握,成绩较差,根据以往的经验,学生在广泛的深入的理解基础上使知识在各个方面建立起有机的联系,是最不容易忘记的,但现在的要求中,学生在这方面还是有所缺失的。在学习能力上,学生课外主动获取知识的能力有所进步,通过自己的努力,一部分孩子的数学有了较为显著的提高,本学期也要继续努力使同学们在这个初中阶段这个最重要的一年的时间里能更上一层楼。学生的逻辑推理、逻辑思维能力,计算能力需要得到加强,还要提高学生的整体成绩,应在合适的时候补充课外知识,拓展学生的知识面,提升学生素质;在学习态度上,绝大部分学生上课能全神贯注,积极的投入到学习中去。 三、教材分析

  本学期教学内容,共计五章,知识的前后联系重、难点分析如下:

  第一章 分解因式: 分解因式的概念、会用两种方法分解因式,即提公因式法、平方差公式和完全平方公式(直接用公式不超过两次)进行因式分解(指数是正整数). 学习分解因式最主要的是为解高次方程作准备,另则学习对于代数式变形的能力和体会分解的思想、逆向思考的作用。

  第二章分式与分式方程 主要让学生掌握分式的`基本性质,会进行约分、通分和加减乘除四则运算,会解一元一次方程的分式方程,会验根。能解决一些与分式分式方程有关的实际问题,具有解决分析问题的的能力和意识。

  第三章 数据的分析是初中代数自成体系的最后一章,主要研究如何收集、整理、计算、分析数据,既定性又定量地获取总体信息,并在这个基础上进行科学的推断.本单元主要内容分为两大部分:反映数据集中趋势的平均数、中位数、众数;反映数据波动大小的极差、方差等.基本要求是体会统计对决策的作用及在社会生活及科学领域中的应用 第四章 通过具体实例认识平移,探索它的基本性质。认识平面图形关于旋转中心的旋转,探索它的基本性质。了解中心对称、中心对称图形的概念,探索图形中心对称的基本性质。结合本章的相关内容,培养学生的空间观念和推理能力,感悟抽象、归纳、演绎、数形结合、转化等数学思想。

  第五章 平行四边形是人们日常生活中应用较广的一种几何图形,本章内容的学习也反复运用了平行线和三角形的知识。从这个角度上来看,本章的内容也是前面平行线和三角形等内容的应用和深化。

  四、提高学科教育质量的主要措施:

  1、认真做好教学工作。把教学工作作为提高成绩的主要方法,认真研读新课程标准,钻研教材,根据新课程标准及教材内容,认真上课,批改作业,认真制作测试试卷,也让学生学会认真学习。

  2、兴趣是最好的老师,爱因斯坦如是说,激发学生的兴趣,给学生介绍数学家,数学史,介绍相应的数学趣题,给出数学课外思考题,激发学生的兴趣。

  3、引导学生积极参与知识的构建,营造民主、和谐、平等、自主、探究、合作、交流、分享发现快乐的高效的学习课堂,让学生体会学习的快乐,享受学习。

  4、引导学生积极归纳解题规律,引导学生一题多解,多解归一,培养学生透过现象看本质,提高学生举一反三的能力,这是提高学生素质的根本途径之一,培养学生的发散思维,让学生处于一种思如泉涌的状态。

  5、运用新课程标准的理念指导教学,积极更新自己脑海中固有的教育理念,不同的教育理念将带来不同的教育效果。

  6、培养学生良好的学习习惯,陶行知说:教育就是培养习惯,有助于学生稳步提高学习成绩,发展学生的非智力因素,弥补智力上的不足。 五、教学进度

  具体课时数如下: 第一章 因式分解 1、因式分解 1课时 2、提公因式法 2课时 3、公式法 3课时 回顾与思考 2课时 测试讲评2课时 第二章 分式与分式方程 1、分式2课时 2、分式乘除法2课时 3、分式加减法3课时 4、分式方程 4课时 回顾与思考2课时 测试讲评2课时 第三章数据的分析 1、平均数 2课时 2、中位数与众数 1课时

  3、从统计图分析数据的集中趋势 4、数据的离散程度3课时 回顾与思考2课时 测试讲评2课时 第四章图形的平移与旋转 1、图形的平移 4课时 2、图形的旋转 3课时 3、中心对称 2课时

  4、图形变化的简单应用 2课时回顾与思考2课时 测试讲评2课时

  期中复习 第五章 平行四边形

  课时 1

  1、平行四边形的性质3课时 2、平行四边形的判定 3课时 3、三角形的中位线 2课时 4、多边形的内角和与外角和 2课时 回顾与思考 2课时 测试讲评2课时 期末复习

初三数学教学计划10

  初三学年上学期的复习教学,是整合升华学科知识、培养提高应试能力的重要环节。复习教学工作的好坏,直接关系到中考的成功与否。为保障毕业班复习教学取得良好成效,奠定今年中考胜利的基础,结合本年毕业班工作实际,对初三复习教学工作提出如下意见。

  一、指导思想

  坚持贯彻党的教育方针,以《初中数学新课程标准》为准绳,继续深入开展新课程教学改革。以提高学生中考成绩为出发点,注重培养学生的基础知识和基本技能,提高学生解题答题的能力。同时通过本学期的课堂教学,完成九年级上册数学教学任务。并根据实际情况,计划完成九年级上册新授课教学内容。

  二、学情分析

  通过对上期末检测分析,发现本班学生存在很严重的两极分化。一方面是平时成绩比较突出的学生基本上掌握了学习的数学的方法和技巧,对学习数学兴趣浓厚。另一方面是相当部分学生因为各种原因,数学已经落后很远,基本丧失了学习数学的兴趣。

  三、教材分析

  第二十一章 一元二次方程(13课时)

  本章的主要学习一元二次方程及其有关概念,一元二次方程的解法(配方法、公式法、因式分解法),运用一元二次方程分析和解决实际问题。其中解一元二次方程的基本思路和具体解法是本章的重点内容。

  方程是科学研究中重要的数学思想方法,也是后续内容学习的基础和工具,本章是对一元一次方程知识的延续和深化,同时为二次函数的学习作好准备。数学建模思想的教学在本章得到进一步渗透和巩固。

  第二十二章 二次函数(12课时)

  本章是学生学习了正比例函数、一次函数以后,进一步学习函数知识,是函数知识螺旋发展的一个重要环节。二次函数是描述变量之间关系的重要的数学模型,它既是其他学科研究时所采用的重要方法之一,也是某些单变量最优化问题的数学模型,如本章所提及的求最大利润、最大面积等实际问题。二次函数的图像抛物线,既是人们最为熟悉的曲线之一,同时抛物线形状在建筑上也有着广泛的应用,如抛物线型拱桥、抛物线型隧道等。和一次函数、反比例函数一样,二次函数也是一种非常基本的初等函数,对二次函数的研究将为学生进一步学习函数、体会函数的思想奠定基础和积累经验。

  第二十三章 旋转(9课时)

  本章主要是探索和理解旋转的性质,能够按要求作出简单平面图形旋转后的图形。本章的重点是中心对称的概念、性质与作图。本章的难点是辨认中心对称图形,按要求作出简单平面图形旋转后的图形。

  学生通过平移、平面直角坐标系,轴对称、四边形等知识的学习,初步积累了一定的图形变换数学活动经验。本章在此基础上,让学生进行观察、分析、画图、简单图案的欣赏与设计等操作性活动形成图形旋转概念。它又对今后继续学习数学,尤其是几何,包括圆等内容的学习起着桥梁铺垫之作用。

  第二十四章 圆(16课时)

  理解圆及有关概念,掌握弧、弦、圆心角的关系,探索点与圆、直线与圆、圆与圆之间的位置关系,探索圆周角与圆心角的关系,直径所对圆周角的特点,切线与过切点的半径之间的关系,正多边形与圆的关系。

  本章是在学习了直线型图形的有关性质的基础上,进一步来探索一种特殊的曲线──圆的有关性质。通过本章的学习,对学生今后继续学习数学,尤其是逐步树立分类讨论的数学思想、归纳的数学思想起着良好的铺垫作用。本章的学习是高中的数学学习,尤其是圆锥曲线的`学习的基础性工程。

  第二十五章 概率初步(12课时)

  理解概率的意义及其在生活中的广泛应用。本章的重点是理解概率的意义和应用,掌握概率的计算方法。本章的难点是会用列举法求随机事件的概率。

  教材注意从知识源头开始的学习与思考,重视知识的发展过程。从现实情境中提出问题、形成解决问题的意向(原发性思想),在实践活动中得到强化或不断地修正,丰富个人的直接经验,它将成为学生理解知识的支持系统。背景经验越丰富,知识的解释力也越强,适用范围也更广,有利于灵活的支配和运用,利于广泛迁移。

  四、教学目标

  帮助学生理解数学对社会发展的作用。使每个学生都能够在数学学习过程中获得最适合自己的发展。通过九年级数学的教学,提供参加生产实践和进一步学习所必需的数学基础知识与基本技能,进一步培养学生的运算能力、思维能力和空间想象能力,能够运用所学知识解决实际问题,培养学生的数学创新意识、良好个性品质以及初步的唯物主义观,和爱国主义教育。

  五、教学措施

  1、认真研读新课程标准,钻研新教材,根据新课程标准及教材适度安排教学内容,认真上课,批改作业,认真辅导,认真制作测试试卷。

  2、激发学生的兴趣,给学生介绍数学家,数学史,介绍相应的数学趣题,给出数学课外思考题,激发学生的兴趣。

  3、引导学生积极参与知识的构建,营造自主、探究、合作、交流、分享发现快乐的课堂。

  4、引导学生积极归纳解题规律,引导学生一题多解,多解归一,培养学生透过现象看本质的能力,这是提高学生素质的根本途径之一,培养学生的发散思维,让学生处于一种思如泉涌的状态。

  5、培养学生良好的学习习惯,陶行知说:教育就是培养习惯,有助于学生稳步提高学习成绩,发展学生的非智力因素,弥补智力上的不足。

  6、教学中注重数学理论与社会实践的联系,鼓励学生多观察、多思考实际生活中蕴藏的数学问题,逐步培养学生运用书本知识解决实际问题的能力,重视实习作业。指导成立“课外兴趣小组”,开展丰富多彩的课外活动,带动班级学生学习数学,同时发展这一部分学生的特长。

  7、开展分层教学,布置作业设置a、b、c三类分层布置分别适合于差、中、好三类学生,课堂上的提问照顾好各个层次的学生,使他们都得到发展。

  8、把辅优补差工作落到实处,进行个别辅导。

初三数学教学计划11

  一、教学目标

  1.了解位似图形及其有关概念,了解位似与相似的联系和区别,掌握位似图形的性质.

  2.掌握位似图形的画法,能够利用作位似图形的方法将一个图形放大或缩小.

  二、重点、难点

  1.重点:位似图形的有关概念、性质与作图.

  2.难点:利用位似将一个图形放大或缩小.

  3.难点的突破方法

  (1)位似图形:如果两个多边形不仅相似,而且对应顶点的连线相交于一点,那么这样的两个图形叫做位似图形,这个点叫做位似中心,这时的`相似比又称为位似比.

  (2)掌握位似图形概念,需注意:①位似是一种具有位置关系的相似,所以两个图形是位似图形,必定是相似图形,而相似图形不一定是位似图形;②两个位似图形的位似中心只有一个;③两个位似图形可能位于位似中心的两侧,也可能位于位似中心的一侧;④位似比就是相似比.利用位似图形的定义可判断两个图形是否位似.

  (3)位似图形首先是相似图形,所以它具有相似图形的一切性质.位似图形是一种特殊的相似图形,它又具有特殊的性质,位似图形上任意一对对应点到位似中心的距离等于位似比(相似比).

  (4)两个位似图形的主要特征是:每对位似对应点与位似中心共线;不经过位似中心的对应线段平行.

  (5)利用位似,可以将一个图形放大或缩小,其步骤见下面例题.作图时要注意:①首先确定位似中心,位似中心的位置可随意选择;②确定原图形的关键点,如四边形有四个关键点,即它的四个顶点;③确定位似比,根据位似比的取值,可以判断是将一个图形放大还是缩小;④符合要求的图形不惟一,因为所作的图形与所确定的位似中心的位置有关(如例2),并且同一个位似中心的两侧各有一个符合要求的图形(如例2中的图2与图3).

初三数学教学计划12

  一、学生情况分析:

  对八年级的学习情况与期末测试成绩进行分析,可以看出学生已经初步掌握二次根式的运算,能利用一元二次方程来解一般的应用题,大多数学生能掌握平行四边形与特殊平行四边形的性质与判定,具备了一定的逻辑推理能力。在数学的思维方面,学生正处于形象思维向逻辑抽象思维的过度提升期,教学中提倡数形结合,让学生适当思考部分有利于思维提高的练习,无疑是对学生终身有用的;在学习习惯方面,部分学生的不良习惯得到了纠正,良好的习惯要得到巩固,如独立思考,认真进行总结,及时改正作业等,都应得到强化;在学习兴趣方面,大部分学生对数学学习的积极性较高,但仍有部分学生对数学信心不足,因此开学初要给学生树信心,刚开始起点宜低,讲解宜慢,使学生适应九年级的数学学习。

  二、指导思想:

  通过十几年数学的教学,提供进一步学习所必需的数学基础知识与基本技能,进一步培养学生的运算能力、思维能力和空间想象能力,能够运用所学知识解决简单的实际问题,教育学生掌握基础知识与基本技能,培养学生的逻辑思维能力、运算能力、空间观念和解决简单实际问题的能力,使学生逐步学会正确、合理地进行运算,逐步学会观察分析、综合、抽象、概括。会用归纳演绎、类比进行简单的推理。提高学习数学的兴趣,逐步培养学生具有良好的学习习惯,实事求是的态度。顽强的学习毅力和独立思考、探索的新思想。培养学生应用数学知识解决问题的能力。

  三、教材内容分析:

  第一章 二次函数

  本章的主要内容有二次函数的概念、二次函数的图象、性质和应用,它们在日常生活和生产实际中有着广泛的应用。本章的重点是二次函数的图象与性质的理解和掌握;二次函数学习过程中所蕴含的数学思想方法,函数图象的特征和变换以及二次函数性质的灵活应用是本章教学的难点。本章教学时要充分运用实例帮助学生正确理解二次函数的概念,体会函数思想。

  第二章 简单事件的概率

  本章的主要内容有事件的可能性、简单事件的概率、用频率估计概率、概率的简单应用。本章的重点是简单事件的概率的计算;画树状图分析事件的可能性是本章教学的难点。本章教学时应渗透数形结合的数学思想。

  第三章 圆的基本性质

  本章的主要内容有圆的有关概念、圆的性质,以及弧长、扇形的面积,圆锥的侧面积和全面积计算。本章的重点是有关弦、弧、圆心角和圆周角的基本性质;圆的基本性质的几个主要定理的探究和证明是本章教学的难点。在本章教学中要使学生从事观察、测量、折叠、平移、推理等活动,注意理论和实践相结合、抽象与直观相结合,分步设疑,巧设阶梯,以达学生理解。

  第四章 相似三角形

  本章的`主要内容有比例线段、由平行线截得的比例线段、相似三角形、两个三角形相似的判定、相似三角形的性质及其应用、相似多边形和图形的位似。本章的重点是相似三角形的判定和性质;利用相似三角形解决图形中的比例线段问题是本章教学的难点。

  本章教学时应注意充分运用类比的思想;继续重视观察、实验的方法等。

  四、具体措施:

  1、做好教材钻研工作。认真研读新课程标准,钻研新教材,根据新课程标准,扩充教材内容,认真上课,批改作业,认真辅导,认真制作测试试卷,也让学生学会认真。

  2、兴趣是最好的老师,爱因斯坦如是说。激发学生的兴趣,给学生介绍数学家,数学史,介绍相应的数学趣题,给出相应的数学思考题,激发学生的兴趣。

  3、开展丰富多彩的课外活动,课外调查,数学建模,野外测量,七巧板游戏,课件演示。使学生乐在其中,乐此不疲。

  4、挖掘数学特长生,发展这部分学生的特长,使其冒尖。

  5、开展分层教学实验,使不同的学生学到不同的知识,使人人能学到有用的知识,使不同的人得到不同的发展,获得成功感,使优生更优,差生逐渐赶上。

初三数学教学计划13

  一、内容和内容解析

  (一)内容

  一元二次方程的概念,一元二次方程的一般形式.

  (二)内容解析

  一元二次方程是方程在一元一次方程基础上 “次”的推广,同时它是解决诸多实际问题的需要,为勾股定理、相似等知识提供运算工具,是二次函数的基础.

  针对一系列实际问题,建立方程,引导学生观察这些方程的共同特点,从而归纳得出一元二次方程的概念及一般形式.在这个过程中,通过归纳具体方程的共同特点,得出一元二次方程的概念,体现了研究代数学问题的一般方法;一般形式ax2+bx+c=0也是对具体方程从“元”(未知数的个数)、“次数”和“项数”等角度进行归纳的结果;a≠0的条件是确保满足 “二次”的要求,从另一个侧面为理解一元二次方程的概念提供了契机.

  二、目标和目标解析

  (一)教学目标

  1.体会一元二次方程是刻画实际问题的重要数学模型,初步理解一元二次方程的概念;

  2.了解一元二次方程的一般形式,会将一元二次方程化成一般形式.

  (二)目标解析

  1.通过建立一元方程解决相关的实际问题,让学生体会到未知数相乘导致方程的次数升高,继而产生一元二次方程.学生能举例说明一元二次方程存在的实际背景,感受一元二次方程是重要的数学模型,体会到学习的必要性;

  2.将不同形式的一元二次方程统一为一般形式,学生从数学符号的角度,体会概括出数学模型的简洁和必要,针对“二次”规定a≠0的条件,完善一元二次方程的概念.学生能够将一元二次方程整理成一般形式,准确的说出方程的各项系数,并能确定简单的字母系数方程为一元二次方程的条件.

  三、教学问题诊断分析

  一元二次方程是学生学习的第四个方程知识,首先在初一学习了一元一次方程,接着扩展“元”得到二元一次、三元一次方程,完成了二元一次方程组的学习,初二分式的教学,使得对实际问题的刻画从整式推广到有理式,分式方程得以出现,到一元二次方程第一次实现 “次”的提升.学生必然存在着疑问,为什么有些背景列得的方程是二次的呢?教学中要直面学生的疑问,显化学生的疑问,启发学生自己解释疑问,才能避免“灌输”,体现知识存在的必要性,增强学好的信念.

  培养建模思想,进一步提升数学符号语言的应用能力, 让学生自己概括出一元二次方程的概念,得出一般形式,对初三学生是必须的,也是适可的.

  本课的教学重点应该放在形成一元二次方程概念的过程上,不能草草给出方程的概念就反复辨析练习,在概念的理解上要下功夫.

  本课的教学难点是一元二次方程的概念.

  四、教学过程设计

  (一)创设情境,引入新知

  教师展示教科书本章的章前图,请同学们阅读章前问题,并回答:

  问题1.这个方程属于我们学过的某一类方程吗?

  师生活动:学生整理已经学过的方程类型,复习方程的概念,元与次的概念,观察新方程,分析此方程的元与次,尝试为新方程命名.

  【设计意图】使学生认识到一元二次方程是刻画某些实际问题的模型,体会学习的必要性,在学生已有的知识的体系中合理的构建一元二次方程这一新知识.

  问题2.这样的方程在其他实际问题中是否还存在呢?你能再想出一个例子吗?

  师生活动:学生思考二次项产生的原因,从熟悉的实际背景中,很有可能从矩形的面积出发,设计情境.

  【设计意图】让学生从“接受式”的学习方式中走出来,走向对一元二次方程产生的根源的探求,在编制情境的过程中,他们将加深对一元二次方程概念的理解.部分学生能够独立解决问题,自己编制情境并列出方程,部分学生可以根据同学给出的情境去列方程,或者阅读课本上的实际问题.

  (二)拓宽情境,概括概念

  给出课本问题1、问题2的.两个实际问题,设未知数,建立方程.

  问题1 如图21.1-1,有一块矩形铁皮,长100 cm,宽50 cm.在它的四个角各切去一个同样的正方形,然后将四周突出的部分折起,就能制作一个无盖方盒.如果要制作的无盖方盒的底面积是3 600 cm2,那么铁皮各角应切去多大的正方形?

  个队参赛,则每个队要与其他____个队各赛一场,全部比赛共有___ 场.

  由此,我们可以列出方程______________,化简得________________.

  问题3. 这些方程是几元几次方程?

  师生活动:学生将实际问题中的语言转化成数学的符号语言,体会运算关系,寻找等量关系,学习建模.将列得的方程化简整理,判断出方程的次数.

  【设计意图】在建模的过程中不仅加强学生的数学思维能力,而且对二次项产生的根源将更加明晰,加深对一元二次方程的理解.让学生回答方程的元与次,一是让他们体会统一成一般形式的必要性,为概念的形成做铺垫,分解教学的难点;二是让他们明确教学的主线,从被动学习走向主动学习.

  问题4.这些方程是什么方程?

  师生活动:观察本课得出的一些方程,思考它们的共性,同学们尝试给出一元二次方程的定义,并且概括出一元二次方程的一般形式.

  1.一元二次方程的概念:

  等号两边都是整式,只含有一个未知数,并且未知数的最高次数是2(二次)的方程叫做一元二次方程.

  2.一元二次方程的一般形式是

  是二次项,a是二次项系数;

  开发学生认识的资源,激发学生从不同角度、不同形式去深入理解同一概念,让不同的学生在此过程中获得不同的收获,实现分层教学分层指导的效果.

  问题6. 下列方程哪些是一元二次方程?

  例1.下列方程哪些是一元二次方程?

  (1)

  ;

  (3)

  ;

  (5)

  .

  答案(2)(5)(6).

  师生活动:用概念指导辨析,方程(3)与(4)同学们可能会产生争议,(3)帮助学生明确一元二次方程是整式方程,(4)体会化为一般形式的必要性,对a≠0条件加深认识.

  【设计意图】补足学生所举正反例的缺漏,追问:有二次项的一元方程就是一元二次方程吗?帮助学生进一步巩固概念,深化对一元、二次的认识.

  问题7.指出下列方程的二次项、一次项和常数项及它们的系数.

  例2. 将下列方程化为一般形式,并分别指出它们的二次项、一次项和常数项及它们的系数:

  (1)

  师生活动: (1)将方程

  ,移项,合并同类项得:

  ,二次项系数是3;一次项是

  ,常数项是

  ,过程略.

  例3.关于x的方程

  时此方程为一元二次方程;

  时此方程为一元一次方程.

  【设计意图】在形式比较复杂的方程面前,通过辨析方程的元、次、项看清方程的本质,深化理解,淡化对一元二次方程概念的记忆.

  (四)巩固概念,学以致用

  教科书第4页: 练习

  【设计意图】巩固性练习,同时检验一元二次方程概念的掌握情况.

  (五)归纳小结,反思提高

  请学生总结今天这节课所学内容,通过对比之前所学其它方程,谈对一元二次方程概念的认识,反思学习过程中的典型错误.

  (六)布置作业:教科书习题21.1

  复习巩固:第1,2,3题.

  五、目标检测设计

  1.下列方程哪些是关于x的一元二次方程

  (1)

  ;(3)

  .

  【设计意图】考查对一元二次方程概念的理解.

  2.关于

  是一元二次方程,则( ).

  A.

  C.

  【设计意图】考查

  的一元二次方程

初三数学教学计划14

  一、班情分析

  经过九年级的数学学习,基本形成数学思维模式,具备一定的应用数学知识解决实际问题的能力,但在知识灵活应用上还是很欠缺,同时作答也比较粗心。

  二、指导思想

  以《初中数学新课程标准》为指导,贯彻党的教育方针,开展新课程教学改革,对学生实施素质教育,切实激发学生学习数学的兴趣,掌握学习数学的方法和技巧,建立数学思维模式,培养学生探究思维的能力,提高学习数学、应用数学的能力。同时通过本期教学,完成九年级上册数学教学任务。

  三、教学目标

  1、知识与技能目标

  学生通过探究实际问题,认识一元二次方程、二次函数、旋转、圆、概率初步,掌握有关规律、概念、性质和定理,并能进行简单的应用。进一步提高必要的运算技能和作图技能,提高应用数学语言的应用能力,通过二次函数的学习初步建立数形结合的思维模式。

  2、过程与方法目标

  掌握提取实际问题中的数学信息的能力,并用有关的代数和几何知识表达数量之间的相互关系;通过探究圆性质进一步培养学生的识图能力;通过对二次函数的探究,培养学生发现规律和总结规律的能力,建立数学类比思想;通过对二次函数的探究,体验化归思想。

  3、情感与态度目标

  通过对数学知识的探究,进一步认识数学与生活的密切联系,明确学习数学的意义,并用数学知识去解决实际问题,获得成功的体验,树立学好数学的信心。体会到数学是解决实际问题的重要工具,了解数学对促进社会进步和发展的重要作用。认识数学学习是一个充满观察、实践、探究、归纳、类比、推理和创造性的过程。养成独立思考和合作交流相结合的良好思维品质。了解我国数学家的杰出贡献,增强民族的自豪感,增强爱国主义。

  四、教材分析

  第二十一章 一元二次方程:本章主要是掌握配方法、公式法和因式分解法解一元二次方程,并运用一元二次方程解决实际问题。本章重点是解一元二次方程的思路及具体方法。本章的难点是解一元二次方程。

  第二十二章 二次函数:本章主要掌握二次函数的图像和性质,二次函数与一元二次方程的关系,实际问题与二次函数。本章重难点就是二次函数的图像和性质及应用。

  第二十三章 旋转:本章主要是探索和理解旋转的性质,能够按要求作出简单平面图形旋转后的图形。本章的重点是中心对称的概念、性质与作图。本章的难点是辨认中心对称图形,按要求作出简单平面图形旋转后的图形。

  第二十四章 圆:理解圆及有关概念,掌握弧、弦、圆心角的关系,探索点与圆、直线与圆、圆与圆之间的位置关系,探索圆周角与圆心角的关系,直径所对圆周角的特点,切线与过切点的半径之间的`关系,正多边形与圆的关系。

  第二十五章 概率初步:理解概率的意义及其在生活中的广泛应用。本章的重点是理解概率的意义和应用,掌握概率的计算方法。本章的难点是会用列举法求随机事件的概率。

  五、教学措施

  1、作好课前准备。认真钻研教材教法,仔细揣摩教学内容与新课程教学目标,充分考虑教材内容与学生的实际情况,精心设计探究示例,为不同层次的学生设计练习和作业,作好教具准备工作,写好教案。

  2、营造课堂气氛。利用现代化教学设施和准备好教具,创设良好的教学情境,营造温馨、和谐的课堂教学气氛,调动学生学习的积极性和求知欲望,为学生掌握课堂知识打下坚实的基础。

  3、搞好阅卷分析。在条件许可的情况下,尽可能采用当面批改的方式对学生作业进行批阅,指出学生作业中存在的问题,并进行分析、讲解,帮助学生解决存在的知识性错误。

  4、写好课后小结。课后及时对当堂课的教学情况、学生听课情况进行小结,总结成功的经验,找出失败的原因,并作出分析和改进措施,对于严重的问题重新进行定位,制定并实施补救方案。

  5、加强课后辅导。优等生要扩展其知识面,提高训练的难度;中等生要夯实基础,发展思维,提高分析问题和解决问题的能力,后进生要激发其学习欲望,针对其基础和学习能力采取针对性的补救措施。

  6、成立学习小组。根据班内实际情况

初三数学教学计划15

  一、基本情况:

  本学期是初中学习的关键时期本学期我担任初三年级三(5、6)两个班的数学教学工作,是新课程标准实验教材,如何用新理念使用好新课程标准教材?如何在教学中贯彻新课标精神?这要求在教学过程中的创新意识、引导学生进行思考问题方式都必须不同与以往的教学。因此,在完成教学任务的同时,必须尽可能性的创设情景,让学生经历探索、猜想、发现的过程。并结合教学内容和学生实际,把握好重点、难点。树立素质教育观念,以培养全面发展的高素质人才为目标,面向全体学生,使学生在德、智、体、美、劳等诸方面都得到发展。为做好本学期的教育教学工作,特制定本计划。

  二、指导思想:

  初三数学是以党和国家的教育教学方针为指导,按照九年义务教育数学课程标准来实施的,其目的是教书育人,使每个学生都能够在此数学学习过程中获得最适合自己的发展。通过初三数学的教学,提供参加生产和进一步学习所必需的数学基础知识与基本技能,进一步培养学生的运算能力、思维能力和空间想象能力,能够运用所学知识解决简单的实际问题,培养学生的数学创新意识、良好个性品质以及初步的唯物主义观。

  三、教学内容:

  本学期所教初三数学包括第一章 证明(二),第二章 一元二次方程,第三章 证明(三),第四章 视图与投影,第五章 反比例函数,第六章 频率与概率。其中证明(二),证明(三),视图与投影,这三章是与几何图形有关的。一元二次方程,反比例函数 这两章是与数及数的运用有关的。频率与概率 则是与统计有关。

  四、教学目的:

  在新课方面通过讲授《证明(二)》和《证明(三)》的有关知识,使学生经历探索、猜测、证明的过程,进一步发展学生的推理论证能力,并能运用这些知识进行论证、计算、和简单的作图。进一步掌握综合法的证明方法,能证明与三角形、平行四边形、等腰梯形、矩形、菱形、以及正方形等有关的性质定理及判定定理,并能够证明其他相关的结论。在《视图与投影》这一章通过具体活动,积累数学活动经验,进一步增强学生的动手能力发展学生的空间思维。在《频率与概率》这一章》让学生理解频率与概率的.关频率与概率系进一步体会概率是描述随机现象的数学模型。

  在《一元二次方程》和《反比例函数》这两章,让学生了解一元二次方程的各种解法,并能运用一元二次方程和函数解决一些数学问题逐步提高观察和归纳分析能力,体验数学结合的数学方法。同时学会对知识的归纳、整理、和运用。从而培养学生的思维能力和应变能力。

  五、教学重点、难点

  本册教材包括几几何何部分《证明(二)》,《证明(三)》,《视图与投影》。代娄部分《一元二次方程》, 《反比例函数》。以及与统计有关的《频率与概率》。《证明(二)》,《证明(三)》的重点是

  1、要求学生掌握证明的基本要求和方法,学会推理论证;

  2、探索证明的思路和方法,提倡证明的多样性。

  难点是

  1、引导学生探索、猜测、证明,体会证明的必要性;

  2、在教学中渗透如归纳、类比、转化等数学思想。《视图与投影》和重点是通过学习和实践活动判断简单物体的三种视图,并能根据三种图形描述基本几何体或实物原型,实现简单物体与其视图之间的相互转化。难点是理解平行投影与中心投影,明确视点、视线和盲区的内容。

  《一元二次方程》, 《反比例函数》的重点是

  1、掌握一元二次方程的多种解法;

  2、会画出反比例函数的图像,并能根据图像和解析式探索和理解反比例函数的性质。难占是1、会运用方程和函数建立数学模型,鼓励学生进行探索和交流,倡导解决问题策略的多样化。《频率与概率》的重点是通过实验活动,理解事件发生的频率与概率之间的关系,体会概率是描述随机现象的的数学模型,体会频率的稳定性。难点是注重素材的真实性、科学性、以及来源渠道的多样性,理解试验频率稳定于理论概率,必须借助于大量重复试验,从而提示概率与统计之间的内存联系。

  六、教学措施:

  针对上述情况,我计划在即将开始的学年教学工作中采取以下几点措施:

  1、新课开始前,用一个周左右的时间简要复习上学期的所有内容,特别是几何部分。

  2、教学过程中尽量采取多鼓励、多引导、少批评的教育方法。

  3、教学速度以适应大多数学生为主,尽量兼顾后进生,注重整体推进。

  4、新课教学中涉及到旧知识时,对其作相应的复习回顾。

  5、复习阶段多让学生动脑、动手,通过各种习题、综合试题和模拟试题的训练,使学生逐步熟悉各知识点,并能熟练运用。

  七、教学进度:

  除了以上计划外,我还将预计开展转化个别后进生工作,教学中注重数学理论与社会实践的联系,鼓励学生多观察、多思考实际生活中蕴藏的数学问题,逐步培养学生运用书本知识解决实际问题的能力,重视实习作业。

【初三数学教学计划】相关文章:

初三数学教学计划10-11

初三数学教学计划范文集锦6篇08-29

初三教学计划08-23

初三物理教学计划10-21

初三历史教学计划09-28

初三体育教学计划07-01

初三物理教学计划08-14

初三数学教学总结07-19

初三数学的教学总结10-11

初三数学教学总结08-12