数学教学设计(精选15篇)
作为一位杰出的老师,有必要进行细致的教学设计准备工作,教学设计是连接基础理论与实践的桥梁,对于教学理论与实践的紧密结合具有沟通作用。教学设计应该怎么写才好呢?以下是小编为大家收集的数学教学设计,供大家参考借鉴,希望可以帮助到有需要的朋友。
数学教学设计1
教学目标:
1、通过测量活动体验1分米的长度,培养学生的空间想象和动手能力。
2、采用同桌合作、小组合作的学习方式,初步理解分米、厘米、米之间的关系。
3、通过估、量的活动,发展估测能力。
教学重难点
1、体验1分米的长度。
2、掌握长度单位之间的进率。
3、建立1分米的长度概念。
教学过程:
一、创设情境,生成问题:
让学生动手测量课桌的桌面的长、宽。
1、两人为一组测量桌面的长、宽。
2、全班交流。
3、发现问题,提出问题。(引导学生发现量比较长的物体的`长度用厘米、毫米作单位来测量不方便)
师:看样子,米和厘米用在这里都不合适,怎么办呢?这时就需要一个新的长度单位来帮忙。这节课我们就来共同认识一个新的长度单位。
二、探索交流、解决问题。
1、(出示小棒)这根小棒有多长呢?你能试着估一估它大约有多长吗?(学生汇报)
2、量一量。
(1)看来同学们的估测结果各不相同,那么这根小棒究竟有多长呢,你能想出有什么好的办法知道它的长度吗?(用尺子量)
(2)动手实践。在你的桌子上就有一根和老师一样长的小棒,赶快行动量一量吧。
3、学生汇报测量结果。
4、让学生观察尺子,尺子上0刻度到刻度10之间的长度就是1分米,请学生数一数几厘米是1分米。板书:1分米=10厘米
5、让学生找一找、比一比在我们身边,或在我们身上哪些物体的长度约是1分米。
6、用手比划1分米有多长。
7、闭上眼睛想一想1分米有多长。
8、认识几分米。
(1)在尺子上认识几分米。
(2)出示教具让学生认识几分米。
9、用分米量。
量绳子的长度(让学生先估测,然后再测量)
量完后学生汇报交流
三、巩固应用、内化提高。
1、练习一的第3题
2、判断下列的说法是否正确,正确的打“ √ ”,错误的打“×”
(1)一条裤子长9分米( )
(2)一张床长5分米( )
(3)小明高14分米( )
(4)一支毛笔长2分米也就是20厘米( )
3、填空:
5分米=( )厘米=( )毫米30毫米=( )分米
40毫米=( )厘米=( )分米2米=( )厘米
四、课堂作业:
1、口算:
18÷3= 3400-300= 120+400= 21÷7=6×7= 45÷5=
2、填空:
3厘米=( )毫米( )厘米=5分米6分米=( )厘米
100毫米=( )厘米( )分米=4米60毫米=( )厘米
3厘米5毫米=( )毫米
五、回顾整理、反思提升
说说这节课你有什么收获?
板书设计:
分米的认识
1分米=10厘米1米=10分米
数学教学设计2
教学目标:
使学生掌握用竖式计算连加、连减的方法和简便写法。
进一步巩固两位数加、减两位数,提高学生的计算能力。
教学重点:
使学生掌握用竖式计算连加、连减的方法。
教学难点:
使学生掌握两个竖式连写的方法。
教学过程:
一、师生问好
我听你们的老师说,大家都非常的聪明,什么东西都是一教就会,我不信,现在就来考考大家,看看你们是不是真的很聪明。
二、检查复习
1、口算下面各题(并说一说计算顺序)
8+4+3= 13-4-5= 62-20=
9+5+7= 16-8-4= 58-30=
2、笔算下面各题(并说一说)
28+34= 52-20=
三、导入新课
我对大家刚才的表现非常满意,果真是名不虚传,你们真的是非常的聪明。不过我还想试一试,看看能不能难倒你们。
将28+34改为例1 28+34+23
四、教学新知
师:这三个数相加,我们应该先算什么?
生:先算 28+34
师:28+34我们已经算过了,谁能帮老师写出来?
(学生口述计算,教师板书。)
师:现在做完了没有?还要算什么?
(学生口述计算,教师板书。)
师:现在做完了吗?
(注意,还要再在横式上写上得数。)
师:这几位同学真聪明,还有哪位同学和他同样聪明?
好!现在我们就来比试一下,看谁最聪明?!
完成 “做一做” 49+25+17
师:大家看一下,我们刚才在计算时用了几个竖式?谁能只用一个竖式就能算出来呢?
你是怎样想的?
生回答。
真棒!现有我们把原来的两个竖式合成了一个竖式,比原来简便多了,这就叫“简便写法”。
好!同学们真是太聪明了,连简便写法都能自己想出来。看来下面的这道题也难不住大家了。不过也说不定,你们中间会有个“小迷糊” ,看看谁愿意当小迷糊!
把52-20改为例2: 52-20-18
对学生提出要求:先用两个竖式来写,然后再把两个竖式写成竖式的'简便写法。
学生完成后,指名说计算过程,教师板书。
根据学生的情况进行表扬,然后指着其中的 52-20 说:
这一步是两位数减整十数,我们学过它的口算,谁能口算出来呢?
根据学生举手数的多少,说: 真不错,有这么多的同学能口算出来,那么以后我们再遇到这样的题目,能口算的就不用再写竖式了。
在板书上用红色虚线把 52 框起来。
-20
——
下面我们就来试一试,看看你能不能省略其中的一步计算。
“做一做” 84-26-30= 注意:遇到哪一步可以口算,就不必写竖式。
五、课堂总结
同学们,刚才我们所做的黑板上的这几个题,就是课本上的例1和例2,其中的例1是三个数相加,叫(连加)(并板书)。例2是从一个数中连续减去两个数,叫(连减)(并板书)。在用竖式计算连加和连减的时候,我们有两种方法,第一种(指例题)用两个竖式来算,第二种把两个竖式连起来写,叫“简便写法”。
六、课堂练习
1、现在我们再来重新练习一下两个竖式的简便写法。
做第1题。
2、大家都做的不错,现有我们再来做一下第2题,你可以选择用两个竖式或用简便写法。
3、另外,如果在计算中,我们发现一些题目比较简单,可以直接口算,不写竖式。
我们来做一下第三题,看谁能不用竖式,直接算出来。
六:板书设计:
连加 连减
例128+34+23=85
28 62 简便 28
+ 34 + 23 写法 +34
———— ———— ————
62 85 62
+23
————
85
例252-20-18=14
52 32 简便 52
- 20 -18 写法 -20
———— ———— ————
32 14 32
- 18
————
14
数学教学设计3
教学目标
1、知识与技能:
1、让学生自主探索小数乘法的计算方法,能正确进行笔算,并能对其中的算理作出合理的解释。
2、使学生体会小数乘法是解决生产、生活中实际问题的重要工具。
2、过程与方法:
在探索计算方法的过程中,培养学生初步的推理能力以及抽象、概括能力。
3、情感态度与价值观:
引导学生进一步体会数学知识之间的内在练习,感受数学探索活动本身的乐趣,增强学好数学的信心。
教学重难点
1、教学重点:
让学生通过主动探索,理解并掌握小数乘小数的计算方法。
2、教学难点:
理解小数乘小数的算理。
3、考点分析:
利用整数的乘法原理解决小数乘小数的算法,让同学们在以后的学习中能够理解小数乘法的能力,高效快捷的计算小数的乘法。
教学工具
多媒体设备
教学过程
教学过程设计
1、情境导入
同学们,前面我们学习了小数乘整数和整数乘小数,我们根据原则能不能计算一下下面的题目。
1、复习旧知:
师:根据15 × 12 = 180,直接写出下面各题的积。
15 × 1.2=?
1.5 × 12 =?
生:
15 × 1=18
1.5 × 10=18
师:
那么大家知道:1.5x1.2=?
2、导入新知:
师:同学们,下图中是一个课桌,我们能看图解决下面的问题吗?
①从图中,你能获取那些数学信息?
②根据这些信息,你能提出哪些数学问题?
③下面我们就来解决课桌的面积有多大?
你会列式计算小课桌的面积吗?
生:
①从图中我们可以看到课桌的长和宽。
②提问:怎样求课桌的面积呢?
2、探究新知
一、问题解决(1)
1、多媒体展示问题
1、多媒体展示计算流程
师:我们大家一起来解决前面的第一个问题?
学生:观看课件解题过程
在观看课件的过程中教师要合适的进行讲解,让同学们看清小数乘小数的解题过程。
2、问题解析:
二、问题解决(2)
1、多媒体展示问题
师:我们大家一起来解决前面的第二个问题?
学生:举手发言
通过上一个例题的讲解,学生们能够更加踊跃的举手回答问题,在竞争学习中,学生会获得学习的成就感。
三、实际问题(例1)
1、多媒体展示问题
师:现在同学们来看看小数的乘法究竟如何计算?
计算:1.3x1.2
生:
学生分组以最快的`速度进行思考,看谁能最快找出解题思路。
2、问题解析:
第一步:同学们先来计算:13x12
第二步:数一数因数中总共有几位小数?
因数总共有2为小数,所以积有2位小数。
第三步:把整数乘法的即向前移动2位。
四、实际问题(例2)
1、多媒体展示问题
师:计算:0.14x1.2
生:学生分组以最快的速度进行计算,看哪个小组计算得又对又快。
2、问题解析:
第一步:同学们先来计算:14x12
第二步:数一数因数中总共有几位小数?
因数总共有3位小数,所以积有3位小数。
第三步:把整数乘法的即向前移动3位。
五、实际问题(例3)
1、多媒体展示问题
师:计算:1.1x0.12
生:每位同学都看是进行计算,看那位同学计算的又快又准。
2、问题解析:
第一步:同学们先来计算:11x12
第二步:数一数因数中总共有几位小数?
因数总共有3位小数,所以积有3位小数。
第三步:把整数乘法的即向前移动3位。
3巩固提高
1、师:现在请大家看屏幕上面的这几道题,能不能找出那些是正确的,哪些是错误的。(课件出示题目)
师:要找出正确的题目,主要是找对小数点的位置。
生:学生互相探讨交流,完成整个题目,培养学生独立思考的能力。
解:
56.7×38=2154.6正确
0.37×0.94=3.478错误,应该是0.3478
41.2×9.2=3790.4错误,应该是379.04
0.78×6.1=47.58错误,应该是4.758
2、师:接下来,再看一个题目,这次要分组进行,看看哪个组做得又快又好。(课件出示题目)
题目:小明每小时能走12.5千米,从教室去图书馆用了1.5小时,教师距离图书馆多少千米?
①各小组先列出算式
生:各小组在竞争中享受获取知识的乐趣。
答案:12.5x1.5
②现在各小组开始竖式计算,看哪个组计算得快。
解析:
第一步:同学们先来计算:125x15
第二步:数一数因数中总共有几位小数?
因数总共有2位小数,所以积有2位小数。
第三步:把整数乘法的即向前移动3位。
3、师:现在我们来计算一下这一个题目,这次要自己独立完成。
题目:0.75x0.25
解析:
第一步:同学们先来计算:75x25
第二步:数一数因数中总共有几位小数?
因数总共有4位小数,所以积有4位小数。
第三步:把整数乘法的即向前移动4位。
4方法总结
小数乘法计算方法:
1、先计算整数乘法
2、数出因数的小数位数
3、移动小数点
5作业布置
1、计算下列小数乘法:
① 0.87x2.25
② 0.45x3.2
③ 1.4x2.55
④ 3.6x1.8
⑤ 11.2x3.5
解析:
2、如果长方形的长为30px,宽为45px,求出长方形的面积?
解析:
可以列出算式为:1.2x1.8
答:长方形面积为54px?。
课后小结
今天这堂课大家运用知识间的联系,探索出小数乘小数的计算方法,生活中有许多小数乘法的问题,希望你们能用学过的知识去解决。这节课主要为了让同学们掌握小数与小数乘法的计算,在教学中涉及了学生互动,分组学习等教学模式,真正体现了学生的主体地位。让学生在课堂上动起来,寻找知识、体会知识。并在授课中采用多媒体教学手段,这样学生才能更加清晰的了解小数乘法的计算过程和原理。
板书
第2节小数乘小数
小数乘法计算方法:
1、先计算整数乘法
2、数出因数的小数位数
3、移动小数点
数学教学设计4
【教学内容】
《义务教育教科书·数学》(青岛版)六年制二年级上册第二元信息窗2
【教学目标】
1、在掌握5的乘法口诀的基础上经历2的乘法口诀的编制过程,理解2的乘法口诀的意义,掌握最佳记忆方法,能熟练背诵2的乘法口诀。
2、在观察、操作、归纳等数学活动中,提升学生的数学表达、探索新知的能力,发展学生的数感。
3、在运用2的乘法口诀解决问题过程中,获得一些成功的体验,进一步形成独立思考、探究问题的意识。
【教学重点】
经历归纳2的乘法口诀的过程,理解2的乘法口诀的意义。
【教学难点】
熟记2的乘法口诀,并能灵活应用乘法口诀进行计算。
【教学准备】
小棒、多媒体课件
【教学过程】
一、创设情境,提出问题
谈话:同学们上节课我们观看了骑单轮车的精彩杂技表演,研究了5的乘法口诀,今天杂技演员们给大家表演的是顶竹竿,同时也带来了新的数学问题,让我们一起去欣赏。仔细观察,你能发现哪些数学信息?
预设1:有5名演员在顶竹竿,每根竹竿上都有两名演员。预设2:舞台上还挂着灯笼,每串上有2个红灯笼、5个黄灯笼。谈话:我们尝试把它们编成一首小儿歌。一人头顶1根竿,竿上两人转圈圈(教师指图加手势演示);两人头顶2根竿??谁能接着说?
预设:竿上4人转圈圈。
追问:接着往下编,你能提出什么问题?预设:3根竿上有几人?4根、5根呢?
谈话:下面我们就来解决“3根竿上有几人?4根、5根呢?”这个问题。
【设计意图】
本环节以学生喜闻乐见的杂技表演顶竹竿为背景,与生活联系密切。指导学生观察情境图找出有用的数学信息,将信息以学生喜欢的儿歌对话的语言表达形式呈现,能自然而然地把学生引入有趣的数学学习中。学生在接着编儿歌的过程中会意识到,要想接着编,首先须知道3根、4根、5根竿上分别有几人,从而提出有价值的数学问题,有效地培养了学生的观察、发现、提取数学信息和提出数学问题的能力。
二、解决问题,探究方法
1、借助学具,创编儿歌
谈话:谁来说一说你认为3根竿、4根竿、5根竿上分别有几人?预设:3根杆上有6人,4根竿上有8人,5根竿上有10人。
谈话:大家都认为3根杆上有6人,4根竿上有8人,5根竿上有10人,是怎样得到的呢?先自己动手用小棒摆一摆、算一算,再把你的想法和小组成员交流一下。
学生动手操作,教师巡视指导。汇报交流:
(1)探究3根竿上有几人
提问:“3根竿上有几个人?”哪个小组展示一下你们的方法?(板书:3根竿上个人)学生可能出现的方法有:预设1:摆小棒的方法。预设2:列加法算式2+2+2=6。预设3:列乘法算式3×2=6或2×3=6。
小结:同学们用自己的`方法验证了刚才的猜想,3根竿上6个人(板书:6),表示3个2相加(板书:3个2相加),用乘法算式表示为3×2=6(板书:3×2=6)。
(2)探究4根竿上有几人
提问:4根竿上有几人呢?哪个小组来展示一下你们的方法?(板书:4根竿上个人)学生可能出现的方法有:预设1:用小棒摆一摆。
预设2:列加法算式表示2+2+2+2=8。
预设3:列乘法算式2×4=8或4×2=8,表示4个2相加。
小结:我们运用不同的方法,都得出4根竿上有8人(板书:8),表示4个2相加(板书:4个2相加),用乘法表示为4×2=8(板书:4×2=8)。
(3)探究5根竿上有几人
谈话:3根竿、4根竿上有几人的问题都解决了,哪个小组想来说一说5根竿上有几人,你们是用的什么方法?(板书:5根竿上个人)
预设1:我们是用画圆的方法表示。预设2:列加法算式表示2+2+2+2+2=10。预设3:列乘法算式2×5=10或5×2=10,表示5个2相加。
小结:我们通过摆一摆、算一算得出5根竿上有10人(板书:10),表示5个2相加(板书:5个2相加),用乘法表示为5×2=10(板书:5×2=10)。
(4)探究2根、1根竿上各有几人
提问:2根竿上几个人?2根竿就是几个2?能用加法算式和乘法算式表示吗?(板书:2根竿上个人)
预设:是2个2,加法算式是2+2=4。乘法算式2×2=4所以2根竿有4个人。追问:这里的两个2表示的意思相同吗?那分别表示什么?2×2表示什么?
预设:第一个2表示每根竿上有2人,另一个2表示有2根竿子,2×2表示2个2相加。提问:1根竿上有几人?也就是几个2?用乘法算式怎样表示?预设:1根竿上有2个人,也就是1个2,乘法算式是1×2。
小结:2根竿上有4人(板书:4),表示2个2相加(板书:2个2相加),用乘法表示为2×2=4(板书:2×2=4)。1根竿上有2人(板书:2),表示1个2(板书:1个2),用乘法表示为1×2=2(板书:1×2=2)。
【设计意图】本环节教师给学生提供了充足的自主探究的空间,在摆一摆的过程中、通过借助直观教具,有利于学生在头脑中建立几乘2的直观表象。全班交流不同方法时,在说一说的过程中,既对学生的数学语言表达进行了一次锻炼,同时又在表达的过程中进一步加深了对几乘2乘法意义的理解。整个过程既培养了学生的操作、归纳、倾听能力,又提高了学生解决问题的能力,让学生在经历知识的产生过程中体验到学习数学的乐趣。
2、借助儿歌,创编2的乘法口诀
谈话:刚才我们用不同的方法得到了:1根竿上2个人,2根竿上??不但解决了问题,还编出了一首小儿歌,你们能接着编下去吗?
预设:2根竿上4个人,3根竿上6个人,4根竿上8个人,5根竿上10个人。谈话:除了用小儿歌帮助记忆,你还能想到更简便的方法吗?学生可能回答:可以把儿歌编成乘法口诀。
谈话:1根竿上2个人,表示1个2,用乘法表示为1×2=2,谁能来编第一句?预设:一二得二(板书:一二得二)
提问:2根竿上4个人,表示2个2相加,乘法算式:2×2=4,谁来接着编?预设:二二得四(板书:二二得四)
谈话:剩下的你会编吗?先自己编一编,再把你的想法在组内交流一下。学生独立创编,教师巡视指导。汇报交流:
(1)创编3×2的口诀
谈话:3根竿上6个人,表示什么?用乘法怎样表示?预设:表示3个2相加,列式3×2=6。追问:谁来编口诀?预设1:三二得六。预设2:二三得六。
小结:我们在编口诀时通常都是将较小的数放到前面,这样读起来朗朗上口。所以二三得六就是3×2的乘法口诀。(板书:二三得六)
(2)创编4×2的口诀
谈话:4根竿上8个人,表示4个2相加,乘法算式怎样列呢?它的口诀又是什么呢?预设1:4×2=8,口诀是四二得八。预设2:我编的口诀是二四得八。
预设3:选择二四得八。应该将小数放到前面。
小结:二四得八是4×2的乘法口诀(板书:二四得八)。(3)创编5×2的口诀
谈话:5根竿上10个人,表示几个几相加?用乘法怎样列呢?可以怎样编口诀?预设1:5个2相加,乘法算式5×2=10,口诀是二五得十。预设2:我们的口诀是二五一十。
谈话:为了方便我们在解决5个2相加或2个5相加时都用同一句口诀。我们一起把刚才创编的成果读一读。
谈话:这就是我们这节课学习的新知识——2的乘法口诀(板书课题:2的乘法口诀)。 【设计意图】本环节教师充分利用迁移规律以5的乘法口诀作为基础,在对几乘2的乘法意义理解的基础上,以简短精炼、朗朗上口的儿歌作为载体,将儿歌进行简化,从而抽象出2的乘法口诀。教学中教师先带领学生共同编制“一一得一”、“一二得二”两句乘法口诀,然后放手给学生提供自主探索的空间,充分发挥学生的主动性,学生通过交流捕捉对方的想法,完善自己的认识,在自主对比、选择中,使编制简洁的乘法口诀成为学生的学习需求。
3、背诵口诀,理解意义
谈话:同学们来观察一下这5句口诀,你有什么发现?预设1:每句口诀里都有二。预设2:从下往上看每一句都比上一句多了2,从上往下看每一句都比上一句少了2。预设3:每一句都是表示几个2相加。
谈话:同学们不仅发现了每句口诀间的关系,还发现了口诀表示的意义。那二二得四这句口诀你们知道它表示什么意思吗?二五一十又表示什么意思呢?
预设:二二得四表示2个2相加得4。二五一十表示5个2相加也可以表示2个5相加。追问:有个马虎的小朋友忘记了二四得几你们能帮帮他吗?
预设1:记住二三得六,再加上一个2就可以。或者记住二五一十,减去一个2也可以。 小结:知道了二五一十,减去一个2,非常好。看来同学们发现了口诀里的小秘密,同时也掌握了记忆乘法口诀的小窍门。现在快速记忆口诀,看谁将2的口诀记得又快又准。
(学生自由记忆、背诵,同桌两人对答,师生对答)
谈话:真了不起,相信通过这节课的学习,大家一定能将2的乘法口诀记住。
【设计意图】
本环节教师采用多种形式引导学生理解、记忆2的乘法口诀,通过找规律,学生进一步发现每句口诀间的联系,更深刻地理解每句口诀的意义。教师利用了师生之间、生生之间对口令等多种方式调动学生的兴趣,学生学习积极性高,记得准确而深刻,为以后学习其他乘法口诀打下基础。
4、解决绿点问题“一共有多少个灯笼?”
谈话:仔细观察舞台布置,你们能找到哪儿藏着可以用2的乘法口诀解决的问题吗?预设:台上一共有多少个红灯笼?
谈话:台上一共有多少个红灯笼就是求什么?怎样列式?预设1:就是求4个2相加,列加法算式2+2+2+2=8。预设2:求4个2是多少,列乘法算式4×2=8或2×4=8。预设3:我用乘法口诀二四得八。
谈话:用口诀我们很快就可以算出4×2=
8、2×4=8。想一想1×1=多少?表示什么?可以怎样编口诀?(板书:1×1=)
预设:1×1=1,表示1个1相加,口诀是“一一得一”。(板书:1)小结:我们就用这句口诀“一一得一”。(板书:一一得一)
【设计意图】
本环节利用2的乘法口诀解决绿点问题,在解决问题的过程中既加深学生对2的乘法口诀的深层理解、又强化了对于2的乘法口诀的记忆,同时提升了学生的应用意识,使所学知识得到进一步巩固。
三、巩固练习,应用方法
1、看图列式。
2、照样子填一填
3、看口诀,写算式
3、运用口诀解决问题
4、找一找生活中用到的2的口诀
谈话:你们能找到生活中还有哪些问题也可以用2的乘法口诀接解决吗?预设1:一名小朋友有2只眼睛,3名小朋友有几只眼睛?二三得六。预设2:教室里一盏灯有两根灯管,4盏灯有几根灯管?二四得八。
【设计意图】
本环节的课堂练习具有层次性,先让学生借助直观图示列出加法、乘法算式,建立加法与乘法的联系,然后再次经历编写口诀的过程加强对乘法意义的理解,通过看口诀说算式的练习形式,使学生初步体会交换两个因数,结果不变的规律,第四道解决问题的题目,加深学生对乘法意义的理解,提高了学生运用乘法知识解决实际问题的能力。让学生找一找生活中哪些问题可以用2的乘法口诀来解决这个问题,体现了数学与生活的密切联系,通过此题,让学生感受数学来源于生活,服务于生活。
四、畅谈收获,总结提升
谈话:同学们,一节课马上就要结束了,这节课你有什么收获呢?谁来跟大家分享一下?预设1:我学会了2的乘法口诀。预设2:我会自己编口诀了。预设4:我会用口诀解决问题。预设3:这节课我很快乐。
谈话:这节课我们通过解决情境中的问题编出了2的乘法口诀,希望同学们能用学到的口诀解决生活中更多的问题!
【设计意图】
学生用自己的语言,总结自己的学习收获,锻炼了语言表达能力,教师适时评价,增强学生学好数学、用好数学的信心,帮助学生全面回顾梳理,养成全面回顾的习惯,利于学生知识体系的完整建构。
数学教学设计5
5.1总体平均数与方差的估计
学习目标:
1、理解总体与样本的关系,认识并体会统计估计的意义,实施办法及在实际问题中的应用。
2、理解用样本平均数、方差推断总体平均数与方差。
重点、难点
体会统计思想,并会用样本平均数和方差估计总体平均数和方差。
教学过程:
一、旧知回顾:
1、在调查研究过程中,总体是XXX,个体是XXX,样本是XXX,样本容量是XXX
2、平均数的计算公式是
3、方差的`计算公式是
二快乐自学:
阅读教材P140—144完成下列练习。
1、在总体中抽取样本,通过对样本的分析,去推断总体的情况,这就是思想。
2、用样本平均数、方差去估计总体的XXX然后再对事件发展做出决断、预测。
3、在“说一说”及“动脑筋”中,分别是可以用样本的
去估计总体的XXX、
4、例题是通过计算零件直径的方差来得到机器两个时段的运作性能是否稳定正常的。
三、巩固练习
数学教学设计6
函数的奇偶性
函数的奇偶性是函数的重要性质,是对函数概念的深化.它把自变量取相反数时函数值间的关系定量地联系在一起,反映在图像上为:偶函数的图像关于y轴对称,奇函数的图像关于坐标原点成中心对称.这样,就从数、形两个角度对函数的奇偶性进行了定量和定性的分析.教材首先通过对具体函数的图像及函数值对应表归纳和抽象,概括出了函数奇偶性的准确定义.然后,为深化对概念的理解,举出了奇函数、偶函数、既是奇函数又是偶函数的函数和非奇非偶函数的实例.最后,为加强前后联系,从各个角度研究函数的性质,讲清了奇偶性和单调性的联系.这节课的重点是函数奇偶性的定义,难点是根据定义判断函数的奇偶性.
教学目标:
1.通过具体函数,让学生经历奇函数、偶函数定义的讨论,体验数学概念的建立过程,培养其抽象的概括能力.
2.理解、掌握函数奇偶性的定义,奇函数和偶函数图像的特征,并能初步应用定义判断一些简单函数的奇偶性.
3.在经历概念形成的过程中,培养学生归纳、抽象概括能力,体验数学既是抽象的又是具体的任务分析
这节内容学生在初中虽没学过,但已经学习过具有奇偶性的具体的函数:正比例函数y=kx,反比例函数,(k≠0),二次函数y=ax,(a≠0),故可在此基础上,引入奇、偶函数的概念,以便于学生理解.在引入概念时始终结合具体函数的图像,以增加直观性,这样更符合学生的认知规律,同时为阐述奇、偶函数的几何特征埋下了伏笔.对于概念可从代数特征与几何特征两个角度去分析,让学生理解:奇函数、偶函数的定义域是关于原点对称的非空数集;对于在有定义的奇函数y=f(x),一定有f(0)=0;既是奇函数,又是偶函数的函数有f(x)=0,x∈R.在此基础上,让学生了解:奇函数、偶函数的矛盾概念———非奇非偶函数.关于单调性与奇偶性关系,引导学生拓展延伸,可以取得理想效果.
一、问题情景
1.观察如下两图,思考并讨论以下问题:
(1)这两个函数图像有什么共同特征?
(2)相应的两个函数值对应表是如何体现这些特征的?可以看到两个函数的图像都关于y轴对称.从函数值对应表可以看到,当自变量x取一对相反数时,相应的两个函数值相同.
对于函数f(x)=x,有f(-3)=9=f(3),f(-2)=4=f(2),f(-1)=1=f(1).事实上,对于R内任意的一个x,都有f(-x)=(-x)2=x2=f(x).此时,称函数y=x2为偶函数.
2.观察函数f(x)=x和f(x)=的图像,并完成下面的两个函数值对应表,然后说出这两个函数有什么共同特征.
22可以看到两个函数的图像都关于原点对称.函数图像的这个特征,反映在解析式上就是:当自变量x取一对相反数时,相应的函数值f(x)也是一对相反数,即对任一x∈R都有f(-x)=-f(x).此时,称函数y=f(x)为奇函数.
二、建立模型
由上面的分析讨论引导学生建立奇函数、偶函数的定义
1.奇、偶函数的定义
如果对于函数f(x)的定义域内任意一个x,都有f(-x)=-f(x),那么函数f(x)就叫作奇函数.如果对于函数f(x)的定义域内任意一个x,都有f(-x)=f(x),那么函数f(x)就叫作偶函数.
2.提出问题,组织学生讨论
(1)如果定义在R上的`函数f(x)满足f(-2)=f(2),那么f(x)是偶函数吗? (f(x)不一定是偶函数)
(2)奇、偶函数的图像有什么特征?
(奇、偶函数的图像分别关于原点、y轴对称) (3)奇、偶函数的定义域有什么特征? (奇、偶函数的定义域关于原点对称)
三、解释应用[例题]
1.判断下列函数的奇偶性.
注:①规范解题格式;②对于(5)要注意定义域x∈(-1,1].
2.已知:定义在R上的函数f(x)是奇函数,当x>0时,f(x)=x(1+x),求f(x)的表达式.
解:(1)任取x<0,则-x>0,∴f(-x)=-x(1-x),
而f(x)是奇函数,∴f(-x)=-f(x).∴f(x)=x(1-x).
(2)当x=0时,f(-0)=-f(0),∴f(0)=-f(0),故f(0)=0.
3.已知:函数f(x)是偶函数,且在(-∞,0)上是减函数,判断f(x)在(0,+∞)上是增函数,还是减函数,并证明你的结论.
解:先结合图像特征:偶函数的图像关于y轴对称,猜想f(x)在(0,+∞)上是增函数,证明如下:
任取x1>x2>0,则-x1<-x2<0.
∵f(x)在(-∞,0)上是减函数,∴f(-x1)>f(-x2).又f(x)是偶函数,∴f(x1)>f(x2).
∴f(x)在(0,+∞)上是增函数.
思考:奇函数或偶函数在关于原点对称的两个区间上的单调性有何关系?
[练习]
1.已知:函数f(x)是奇函数,在[a,b]上是增函数(b>a>0),问f(x)在[-b,-a]上的单调性如何.
2. f(x)=-x3|x|的大致图像可能是()
3.函数f(x)=ax2+bx+c,(a,b,c∈R),当a,b,c满足什么条件时,(1)函数f(x)是偶函数.(2)函数f(x)是奇函数. 4.设f(x),g(x)分别是R上的奇函数和偶函数,并且f(x)+g(x)=x(x+1),求f(x),g(x)的解析式.
四、拓展延伸
1.有既是奇函数,又是偶函数的函数吗?若有,有多少个? 2.设f(x),g(x)分别是R上的奇函数,偶函数,试研究:(1)F(x)=f(x)·g(x)的奇偶性. (2)G(x)=|f(x)|+g(x)的奇偶性.
3.已知a∈R,f(x)=a-,试确定a的值,使f(x)是奇函数.
4.一个定义在R上的函数,是否都可以表示为一个奇函数与一个偶函数的和的形式?
数学教学设计7
许多老师都有这样的感受,好的教学设计是教学成功的一半,教师在教学中设计合理,再加上老师潜移默化的指导对教学效果有着重要的作用,小学数学教学设计反思。现在的教学理念是教师教学如何使用教材,是对教师教学评估的依据之一,但不能否定教材的编排具有逻辑上的错误。因此,如何内化学生,是要教师在课堂中如何使用教法进行加工、为学生提供一定的思想素材,使学生通过观察、分析最后归纳为自己的知识,更重要的是使学生的思维能力得到提高,这更需要教师在教学中设计合理的教学模式,结合有关的教学内容培养学生如何进行初步的分析、综合、比较、抽象、概括,对简单的问题进行判断、推理、逐步学会有条理、有根据地思考问题。同时注意思维的敏捷和灵活,撇开事物的具体形象,抽取事物的本质属性,从而获取知识。
一、设计生活实际、引导学生积极探究。这种教学设计有利于激发学生学习兴趣,使学生对新的知识产生强烈的学习欲望,充分发挥学生的能动性的作用,从而挖掘学生的思维能力,培养学生探究问题的习惯和探索问题的能力。正如:我校一年级的数学老师在教"10以内数的组成",她的教学是这样设计是"7的组成",她的设计如下:
师:你们到过市场买过菜吗?
生:有着不同的回答。
师:你们都有爱吃鱼吗?(爱)。
师:很好。因为鱼含有丰富的钙、铁、蛋白质等,对我们身体有用的物质。
师:请同学们看上黑板,下面老师让大家来数一数黑板上的鱼(出示7条鱼的教具),谁来数一数黑板上老师挂了多少条鱼?
生:学生争先恐后地回答(7条)。
师:你能用算式来表示你是怎样数的吗?请同桌同学相互讨论写出你们的算式,看谁写得最多、最快。谁来说一说你是怎样想的?
生:学生通过思考交流,然后各自说出自己的算法
生:我把它看成3条鱼加上4条鱼等于7条鱼,列式为:3+4=7。
生:我把它看成2条鱼加上5条鱼等于7条鱼,列式为:2+5=7
生:我把它看成1条鱼加上6条鱼等于7条鱼,列式为:1+6=7
师:你们说的都对。
师:最后反馈小结。
教师做到了:1、在教学中既根据自己的实际,又联系学生实际,进行合理的教学设计。注重开发学生的思维能力又把数学与生活实际联在一起,使学生感受到生活中处处有数学。这样的教学设计具有形象性,给学生极大的吸引,抓住了学生认识的特点,形成开放式的.教学模式,学生很快就掌握了数"7"的合成,达到了预先教学的效果。2、给学生充分的思维空间,做到传授知识与培养能力相结合,重视学生非智力因素的培养;合理创设教学情境激发学生的学习动机,注重激发学生学习的积极性推动学生活动意识。3、在教学中也提出了质疑,让学生通过检验,发展和培养学生思维能力,使学生积极主动寻找问题,主动获取新的知识。4、合理地提问与讨论发挥课堂的群体作用,锻炼学生语言表达能力,教案《小学数学教学设计反思》。达成独立、主动地学习、积极配合教师共同达成目标。5、整个课堂教师始终保持着师生平等关系,不断鼓励与赞赏学生,形成互动。这样的教学,如果能上用多媒体展示小朋友参与到菜市场购买鱼的情景,并从中发现问题、解题课堂教学会更生动些。
二、设计质疑教学,激发学生学习欲望,促使学生主动参加实践获取新知识。以下是笔者在教学"7的周长计算公式"的教学设计:
师:前面我们学习过正方形、三角形、矩形、梯形,这些图形的周长是取决于什么?它们的公式是怎样的?
师:我们先回顾一下正方形的周长计算,正方形的周长取决于什么?周长的计算公式是什么?
生:取决于正方形的边长,即:C=4a
师:正方形的周长和它的边长是什么关系?为什么?
生:周长总是边长的4倍,因为四条边长相等。
师:矩形的周长又取决于什么?周长计算公式是什么?
生:矩形的长和宽的和:即:C=2(a+b)
师:矩形的周长和它的长宽的和的关系是什么?为什么?
生:周长总是等于宽与长的和的2倍;因为矩形两条对应边相等。
师:今天我们一起来研究圆的周长计算公式,圆的周长取决于什么呢?
生:(通过思考后,发现圆的直径不同,圆的大小也不同)圆的周长取决于的直径,直径不同周长也不同。
师:圆的周长与直径之间又有什么样的关系呢?有没有象正方形、矩形那存在着一个固定的倍数关系呢?如果有我们就能够根据这个倍数关系来推导出圆周长的计算公式,对不对?(通过教师的引导学生实验、操作、学生自我质疑、最后发现公式)
在这个教学笔者做到了:1、充分挖掘教材,利用学生已有的知识经验作为铺垫,在课堂中学生通过质疑、实验后归纳出圆周长和直径之间的倍数关系为3倍多一点。笔者趁机引入π,顺利地完成圆的周长的计算公式的教学。2、笔者重视传授知识与培养能力相结合,充分发挥和利用学生的智慧能力,积极调动学生主动、积极地探究问题,培养学生自主学习的习惯。3、在传授知识的同时注意了思维方法的培养,充分调动学生的智力因素与非智力因素,使学生主动获取知识。4、教学中创设符合学生逻辑思维方式的问题情境,遵循了创造学习的规律使学生运用已有的知识经验进行分析、比较、综合。
三、创设问题情境,以情引趣,激活思维。教师的教学具有趣味地、合理地提出的问题同样引起学生积极探索,产生求知欲望。而补充知识的引导更能使学生发散思维,更好地培养学生的思维能力。例如:我校四年级教师在教学"分数的分数的加法时"的设计。
师:出示苹果的教具问学生你们都有吃过苹果吗?
生:吃过。
师:如果你妈妈买回的苹果只有一个,而你又要把苹果分给你的爸爸和你的妈妈,你会怎样分呢?
生:思考后汇报,有的平均分三等份,有的分成四等份。
师:提出分成四等份的情况,如果你爸吃了一份,吃了几分之?(四分之一),如果你妈妈也只吃了一份,剩下的由你自己吃,你应该吃了几分之几?
师:出示条件:有一个苹果,小明吃了这个苹果的2/4,爸爸吃了这个苹果的1/4,
师:看了这些条件你可以提出什么问题?
生:小明比爸爸多吃了几分之几?
生:爸爸比小明少吃了几分之几?
生:小明与爸爸一共吃了几分之几?
生:剩下几分之几还没有吃?
…
师:你们提的问题都很好。
然后按照学生所提的问题一一解决。让学生从这些问题中通过观察、分析、比较、综合得到分数的加法规律是:"同分母分数的加、减法分母不变,只把分子相加减。"
其教学特点是:1、重视课程的开发,也重视生活实际的数学概念,充分利用直观教学,遵循学生的具体思维到抽象思维的认识规律。2、重视学生非智力因素的培养,激发学生的学习兴趣,大大推动学生积极思考,勇于探索的精神。3、重视理解与巩固相结合并充分发挥教师的主导作用与学生的主体性相结合。4、给学生铺设合理的思维空间,补充问题的方法,开发学生的思维能力。5、树立平等的师生关系,有趣味地激发学生的学习兴趣。6、设疑问题具有严谨性与可接受性相结合,使学生在探究新知识轻松地获取知识。7、重视学生已有的知识经验,遵循从简单到复杂的认识规律,创设情境既符合学生实际,为探究、认识新知识的结构奠定基础。
教师的教学设计准线不同对学生的智力与非智力因素有着直接的影响。学生要养成好的学习生活习惯,取决于一个教师教学中充当怎么样角色。俗话说:兴趣是最好的老师。对教育者来说,应"以人为本",而不是以知识为本。教师对每一节课多付出心血,并不意味着成了正比例。要对每个学生充分了解合理设计教学,这样才能激发学生的学习兴起,才能触动学生的学习动机,才能使学生学会自主学习的好习惯。
数学教学设计8
第一章第三节 三角函数的诱导公式(一)
一、指导思想与理论依据
数学是一门培养人的思维,发展人的思维的重要学科。因此,在教学中,不仅要使学生“知其然”而且要使学生“知其所以然”。所以在学生为主体,教师为主导的原则下,要充分揭示获取知识和方法的思维过程。因此本节课我以建构主义的“创设问题情境——提出数学问题——尝试解决问题——验证解决方法”为主,主要采用观察、启发、类比、引导、探索相结合的教学方法。在教学手段上,则采用多媒体辅助教学,将抽象问题形象化,使教学目标体现的更加完美。
二.教材分析
三角函数的诱导公式是普通高中课程标准实验教科书(人教A版)数学必修四,第一章第三节的内容,其主要内容是三角函数诱导公式中的公式(二)至公式(六).本节是第一课时,教学内容为公式(二)、(三)、(四).教材要求通过学生在已经掌握的任意角的三角函数的定义和诱导公式(一)的基础上,利用对称思想发现任意角 与 、 、 终边的对称关系,发现他们与单位圆的交点坐标之间关系,进而发现他们的三角函数值的关系,即发现、掌握、应用三角函数的诱导公式公式(二)、(三)、(四).同时教材渗透了转化与化归等数学思想方法,为培养学生养成良好的学习习惯提出了要求.为此本节内容在三角函数中占有非常重要的地位.
三.学情分析
本节课的授课对象是本校高一(1)班全体同学,本班学生水平处于中等偏下,但本班学生具有善于动手的良好学习习惯,所以采用发现的教学方法应该能轻松的完成本节课的教学内容.
四.教学目标
(1).基础知识目标:理解诱导公式的发现过程,掌握正弦、余弦、正切的诱导公式;
(2).能力训练目标:能正确运用诱导公式求任意角的正弦、余弦、正切值,以及进行简单的三角函数求值与化简;
(3).创新素质目标:通过对公式的推导和运用,提高三角恒等变形的能力和渗透化归、数形结合的数学思想,提高学生分析问题、解决问题的能力;
(4).个性品质目标:通过诱导公式的学习和应用,感受事物之间的普通联系规律,运用化归等数学思想方法,揭示事物的本质属性,培养学生的唯物史观.
五.教学重点和难点
1.教学重点
理解并掌握诱导公式.
2.教学难点
正确运用诱导公式,求三角函数值,化简三角函数式.
六.教法学法以及预期效果分析
“授人以鱼不如授之以鱼”, 作为一名老师,我们不仅要传授给学生数学知识,更重要的是传授给学生数学思想方法, 如何实现这一目的,要求我们每一位教者苦心钻研、认真探究.下面我从教法、学法、预期效果等三个方面做如下分析.
1.教法
数学教学是数学思维活动的教学,而不仅仅是数学活动的结果,数学学习的目的不仅仅是为了获得数学知识,更主要作用是为了训练人的思维技能,提高人的思维品质.
在本节课的教学过程中,本人以学生为主题,以发现为主线,尽力渗透类比、化归、数形结合等数学思想方法,采用提出问题、启发引导、共同探究、综合应用等教学模式,还给学生“时间”、“空间”, 由易到难,由特殊到一般,尽力营造轻松的`学习环境,让学生体味学习的快乐和成功的喜悦.
2.学法
“现代的文盲不是不识字的人,而是没有掌握学习方法的人”,很多课堂教学常常以高起点、大容量、快推进的做法,以便教给学生更多的知识点,却忽略了学生接受知识需要时间消化,进而泯灭了学生学习的兴趣与热情.如何能让学生最大程度的消化知识,提高学习热情是教者必须思考的问题.
在本节课的教学过程中,本人引导学生的学法为思考问题、共同探讨、解决问题 简单应用、重现探索过程、练习巩固。让学生参与探索的全部过程,让学生在获取新知识及解决问题的方法后,合作交流、共同探索,使之由被动学习转化为主动的自主学习.
3.预期效果
本节课预期让学生能正确理解诱导公式的发现、证明过程,掌握诱导公式,并能熟练应用诱导公式了解一些简单的化简问题.
七.教学流程设计
(一)创设情景
1.复习锐角300,450,600的三角函数值;
2.复习任意角的三角函数定义;
3.问题:由 ,你能否知道sin2100的值吗?引如新课.
设计意图
自信的鼓励是增强学生学习数学的自信,简单易做的题加强了每个学生学习的热情,具体数据问题的出现,让学生既有好像会做的心理但又有迷惑的茫然,去发掘潜力期待寻找机会证明我能行,从而思考解决的办法.
(二)新知探究
1. 让学生发现300角的终边与2100角的终边之间有什么关系;
2.让学生发现300角的终边和2100角的终边与单位圆的交点的坐标有什么关系;
3.Sin2100与sin300之间有什么关系.
设计意图
由特殊问题的引入,使学生容易了解,实现教学过程的平淡过度,为同学们探究发现任意角 与 的三角函数值的关系做好铺垫.
(三)问题一般化
探究一
1.探究发现任意角 的终边与 的终边关于原点对称;
2.探究发现任意角 的终边和 角的终边与单位圆的交点坐标关于原点对称;
3.探究发现任意角 与 的三角函数值的关系.
设计意图
首先应用单位圆,并以对称为载体,用联系的观点,把单位圆的性质与三角函数联系起来,数形结合,问题的设计提问从特殊到一般,从线对称到点对称到三角函数值之间的关系,逐步上升,一气呵成诱导公式二.同时也为学生将要自主发现、探索公式三和四起到示范作用,下面练习设计为了熟悉公式一,让学生感知到成功的喜悦,进而敢于挑战,敢于前进
(四)练习
利用诱导公式(二),口答下列三角函数值.
(1). ;(2). ;(3). .
喜悦之后让我们重新启航,接受新的挑战,引入新的问题.
(五)问题变形
由sin3000= -sin600 出发,用三角的定义引导学生求出 sin(-3000),Sin150 0值,让学生联想若已知sin3000= -sin600 ,能否求出sin(-3000),Sin150 0)的值. 学生自主探究
1.探究任意角 与 的三角函数又有什么关系;
2.探究任意角 与 的三角函数之间又有什么关系.
设计意图
遗忘的规律是先快后慢,过程的再现是深刻记忆的重要途径,在经历思考问题-观察发现-到一般化结论的探索过程,从特殊到一般,数形结合,学生对知识的理解与掌握以深入脑中,此时以类同问题的提出,大胆的放手让学生分组讨论,重现了探索的整个过程,加深了知识的深刻记忆,对学生无形中鼓舞了气势,增强了自信,加大了挑战.而新知识点的自主探讨,对教师驾驭课堂的能力也充满了极大的挑战.彼此相信,彼此信任,产生了师生的默契,师生共同进步. 展示学生自主探究的结果
诱导公式(三)、(四)
给出本节课的课题
三角函数诱导公式
设计意图
标题的后出,让学生在经历整个探索过程后,还回味在探索,发现的成功喜悦中,猛然回头,哦,原来知识点已经轻松掌握,同时也是对本节课内容的小结.
(六)概括升华
的三角函数值,等于 的同名函数值,前面加上一个把 看成锐角时原函数值的符合.(即:函数名不变,符号看象限.)
设计意图
简便记忆公式.
(七)练习强化
求下列三角函数的值:(1)sin(-1000 ); (2). cos(-204000).
设计意图
本练习的设置重点体现一题多解,让学生不仅学会灵活运用应用三角函数的诱导公式,还能养成灵活处理问题的良好习惯.这里还要给学生指出课本中的“负角”化为“正角”是针对具体负角而言的.
学生练习
化简: .
设计意图
重点加强对三角函数的诱导公式的综合应用.
(八)小结
1.小结使用诱导公式化简任意角的三角函数为锐角的步骤.
2.体会数形结合、对称、化归的思想.
3.“学会”学习的习惯.
(九)作业
1.课本P-27,第1,2,3小题;
2.附加课外题 略.
设计意图
加强学生对三角函数的诱导公式的记忆及灵活应用,附加题的设置有利于有能力的同学“更上一楼”.
(十)板书设计:(略)
八.课后反思
对本节内容在进行教学设计之前,本人反复阅读了课程标准和教材,针对教材的内容,编排了一系列问题,让学生亲历知识发生、发展的过程,积极投入到思维活动中来,通过与学生的互动交流,关注学生的思维发展,在逐渐展开中,引导学生用已学的知识、方法予以解决,并获得知识体系的更新与拓展,收到了一定的预期效果,尤其是练习的处理,让学生通过个人、小组、集体等多种解难释疑的尝试活动,感受“观察——归纳——概括——应用”等环节,在知识的形成、发展过程中展开思维,逐步培养学生发现问题、探索问题、解决问题的能力和创造性思维的能力,充分发挥了学生的主体作用,也提高了学生主体的合作意识,达到了设计中所预想的目标。
然而还有一些缺憾:对本节内容,难度不高,本人认为,教师的干预(讲解)还是太多。在以后的教学中,对于一些较简单的内容,应放手让学生多一些探究与合作。随着教育改革的深化,教学理念、教学模式、教学内容等教学因素,都在不断更新,作为数学教师要更新教学观念,从学生的全面发展来设计课堂教学,关注学生个性和潜能的发展,使教学过程更加切合《课程标准》的要求。用全新的理论来武装自己,让自己的课堂更有效。
数学教学设计9
一、案例实施背景
本节课是20xx-20xx学年度第一学期笔者在一乡镇中学的多媒体教室里上的一节课,课堂中数学优秀生、中等生及后进生都有,所用教材为人教版义务教育课程九年级数学(上册).
二、案例主题分析与设计
本节课是人教版义务教育教科书九年级上册第24章第1节内容——圆,圆的概念是中心对称的继续,是后面研究扇形、弧长的基础,是“空间与图形”的重要组成部分。《数学课程标准》强调:数学教学是数学活动的教学,是师生之间、生生之间交往互动与共同发展的过程;动手实践,自主探索,合作交流是孩子学习数学的重要方式;合作交流的学习形式是培养孩子积极参与、自主学习的有效途径。本节课将以“生活·数学”、“活动·思考”、“表达·应用”为主线开展课堂教学,以学生看得到、感受得到的基本素材创设问题情境,引导学生活动,并在活动中激发学生认真思考、积极探索,主动获取数学知识,从而促进学生研究性学习方式的形成,同时通过小组内学生相互协作研究,培养学生合作性学习精神。
三、案例教学目标
1、知识技能:探索圆的两种定义,理解并掌握弧、弦、优弧、劣弧、半圆等基本概念,能够从图形中识别.
2、数学思考:体会圆的不同定义方法,感受圆和实际生活的联系
3、解决问题:在解决问题过程中使学生体会数学知识在生活中的普遍性.
四、案例教学重、难点
1、重点:圆的两种定义的探索,能够解释一些生活问题.
2、难点:圆的运动式定义方法.
五、案例教学用具
1、教具:多媒体课件、圆规、细线、铅笔。
2、学具:圆规
六、案例教学过程
(一)创设问题情境,激发学生兴趣,引出本节内容
1、如图1,观察下列图形,从中找出共同特点.
图1
2、学生活动:学生观察图形,发现图中都有圆,然后回答问题,此时学生可以再举出一些生活中类似的图形.
3、教师活动:让学生观察图形,感受圆和实际生活的密切联系,同时激发学生的学习渴望以及探究热情.
(二)问题引申,探究圆的定义,培养学生的探究精神
1、如图2,观察下列画圆的过程,你能由此说出圆的形成过程吗?(课件展示画图过程)
图2
2、学生活动:学生小组合作、分组讨论,通过动画演示,发现在一个平面内一条线段OA绕它的一个端点O旋转一周,另一个端点形成的图形就是圆.
3、教师活动设计:在学生归纳的基础上,引导学生对圆的一些基本概念作一界定:圆:在一个平面内,一条线段OA绕它的一个端点O旋转一周,另一个端点A所形成的图形叫作圆;圆心:固定的端点叫作圆心;半径:线段OA的长度叫作这个圆的半径;圆的表示方法:以点O为圆心的圆,记作“⊙O”,读作“圆O”.
4、师生共同归纳:
(1)圆上各点到定点(圆心)的距离都等于定长(半径);
(2)到定点的距离等于定长的点都在同一个圆上.
(3)圆的第二定义:所有到定点的距离等于定长的点组成的图形叫作圆.
5、讨论圆中相关元素的定义.
(1)如图3,你能说出弦、直径、弧、半圆的定义吗?
图3 (2)学生活动:学生小组讨论,讨论结束后派一名代表发言进行交流,在交流中逐步完善自己的结果.
(3)教师活动:在学生交流的基础上得出上述概念的严格定义,对于学生的不准确的'叙述,可以让学生讨论解决. 弦:连接圆上任意两点的线段叫作弦; 直径:经过圆心的弦叫作直径;
弧:圆上任意两点间的部分叫作圆弧,简称弧;
AB,读作“圆弧AB”或“弧弧的表示方法:以A、B为端点的弧记作AB”;
半圆:圆的任意一条直径的两个端点把圆分成两条弧,每一条弧都叫作半圆.
优弧:大于半圆的弧叫作优弧,用三个字母表示,如图3中的 ABC;
. 劣弧:小于半圆的弧叫作劣弧,如图3中的BC
(三)讨论,车轮为什么做成圆形?如果做成正方形会有什么结果?(课件:车轮;课件:方形车轮)
1、学生活动:学生首先根据对圆的概念的理解独立思考,然后进行分组讨论,最后进行交流.
2、教师活动设计:引导学生进行如下分析:如图4,把车轮做成圆形,车轮上各点到车轮中心(圆心)的距离都等于车轮的半径,当车轮在平面上滚动时,车轮中心与平面的距离保持不变,因此当车辆在平坦的路上行驶时,坐车的人会感觉到非常平稳;如果做成其他图形,比如正方形,正方形的中心(对角线的交点)距离地面的距离随着正方形的滚动而改变,因此中心到地面的距离就不是保持不变,因此不稳定.
图4
(四)应用提高,培养学生的应用意识和创新能力m的圆?说出你的理由
2、师生活动设计:教师鼓励学生独立思考,让学生表述自己的方法.根据圆的定义可以知道,圆是一条线段绕一个端点旋转一周,另一个端点形成的图形,所以可以用一条长5m的绳子,将绳子的一端A固定,然后拉紧绳子的另一端B,并绕A在地上转一圈.B所经过的路径就是所要的圆.cm,这棵红杉树平均每年半径增加多少?
图5
4、师生活动设计:首先求出半径,然后除以20即可.
解答:树干的半径是23÷2=11.5(cm).
平均每年半径增加11.5÷20=0.575(cm).
(五)归纳小结、布置作业
小结:圆的两种定义以及相关概念.
作业:请做一个正方形的车轮,体会在车轮滚动的过程中车身的情况
七、教学反思
1、教师角色的转变:本节课教师的角色从知识的传授者转变为学生学习的组织者、引导者、合作者与共同探讨者。在引导学生观察、画图、发现结论后,利用多媒体课件直观的、动态的展示圆的形成过程及车轮原理,激发了兴趣。
2、学生角色的转变:学生的角色从学会转变为会学。本节课学生不是停留在学会课本知识的层面上,而是站在研究者的角度深入其境。
3、课堂氛围的转变:整节课以 “流畅、开放、合作、“隐导”为基本特征。教师对学生的思维活动减少干预,教学过程呈现一种比较流畅的特征,整节课学生与学生、学生与教师之间以“对话”、“讨论”为出发点,以互助、合作为手段,以解决问题为目的,让学生在一个较为宽松的环境中自主选择获得成功的方向,判断发现的价值。
数学教学设计10
教学内容:
镜子中的数学(北师大版数学三年级下册25—26页)
教学目标:
1、结合实例和具体活动,感知镜面对称现象
2、经历探索镜面对称现象的一些特征的过程发展空间知觉和空间观念
教学重点:
感知镜面对称现象
难点:
发展空间知觉和空间观念
教学准备:
师用的示范镜子,学生每人一面小镜子
教学过程:
一、操作导入:
①出示镜子,引导学生照身边的物体,说说你有什么发现。
②小组同学互相说说你的发现
③全班同学汇报
二、探究验证:
①用镜子完成P17“试一试”第(1)题看看整个图形是什么,看和你的发现是不是一样。
②同桌互相合作,完成第(2)题,摆一摆,看一看,你发现了什么。
③帮助机灵狗:
在观察机灵狗的发现,看看是不是对呢?
三、巩固应用:
1、完成P18“练一练”第1题
先想想,再用镜子验证一下你的选择是否正确
2、把镜子放在图中适当的.位置,使你们能看到图的全部
四、实践活动
利用周末的时间,收集对称的图形,图案和照片在全班交流展览。
数学教学设计11
(一)提出问题,导入新课
1、解二元一次方程组
问题
1、母亲26岁结婚,第二年生个儿子,若干年后母亲的年龄是儿子年龄到3倍,此时母亲的年龄为几岁?
解法一:设经过x年后,母亲的年龄是儿子年龄的3倍。 由题意得
26+x=3x 解法二:设母亲的年龄为x岁。 由题意得
x=3(x-26)
(二)精选讲例,探求新知
例
2、某班有45位学生,共有班费2400元钱,准备给每位学生订一份报纸。已知《作文报》的订费为60元/年,《科学报》的订费为50元/年,则订阅两种报纸各多少人?
巩固练习 小明和小李两人进行投篮比赛,规则:小明投3分球,小李投2分球,两人共投中20次,经计算两人得分相等,问小李和小明各投中几个球。
(三)变式训练,激活学生思维
问题
3、小明和小李两人进行投篮比赛,小明投3分球,小李投2分球,两人共投中100次,小明投中率为40%,小明投中率为40%,经计算两人得分相等,问小李和小明各投中几个球。 问题
4、已知某电脑公司有A型、B型、C型3种型号的电脑,其价格分别为A型6000元/台、B型4000元/台、C型2500元/台,我校计划将100500元钱全部用于从该公司购进其中两种不同型号电脑共36台,请你设计出几种不同的购买方案供学校采用。小红的方案:她认为可以购进A型和B型电脑,请你判断小红提出的.方案是否合理,并通过计算说明。
(四)课堂练习,巩固新知
1、A、B两地相距36千米,甲从A地出发步行到B地,乙从B地出发步行到A地,两人同时出发,4小时候相遇。若6小时后,甲所余路程为乙所余路程的2倍,求甲乙两人的速度。
2、某班借来一批图书,分借给同学阅览,如果每人借6本,那么会有一个同学没书可借,如果每人借5本,那么还剩5本书没人借,问该班有多少人,有多少书。
(五)拓展
1、变题训练问题2中,若学校要购买A、B、C3种型号的电脑,有如何安排?
2、某中学新建一栋4层的教学大楼,每层楼有8间教室,进、出这栋大楼共有4道门,其中两道正门大小相同,两道侧门大小也相同。安全检查中,对4道门进行测试,当同时开启一道正门和两道侧门时,2分钟内可以通过560名学生,当同时开启一道正门和一道侧门时,4分钟内可以通过800名学生。
⑴问平均每分钟一道正门和一道侧门各可以通过多少名学生。
⑵检查中发现,紧急情况时因学生拥挤,出门的效率将降低20%,安全检查规定,在紧急情况下全大楼的学生应在5分钟内通过这4道门安全撤离。假设这栋大楼每间教师最多有45名学生,问建造的这4道门是否符合安全规定。
数学教学设计12
通过学习研究新进展与有效教学实践的在线学习,我认识并学到了:1、专家知识在数量和组织方式、知识形态、提取速度等方面,具有自身的优越的特点,综合考虑了学生对学习心理,从心理学上,更准确的把握了学生的学习心理。2、迁移研究的新进展及迁移与学生学习的关系,让学生能更好、更容易接受的方式来教学。3、通过对学生对事物的了解和兴趣,让我们更加清楚的认识学生的努力,及对学生进行启发式教学,引导他们接受新知识、新事物。
通过参加培训,以网络为载体,打破地域局限,与全国的同行、专家、教授进行研讨和交流,深深的意识到,我的有些教学方法及学生的学习习惯、学习方式等有些地方,还需要进一步的改善和提高。像大城市具有良好的教育资源,他们可以用VDR或者带学生出游,感受大自然和数学的联系,让学生亲身经历一些事情,更贴切生活的'教学。同时也提高了学生的学习主动性。
平移与旋转的学习。
首先是介绍了图形的运动,通过介绍图形的运动,来引出运动的几个方面,一个是图形没有发生改变;一个是图形发生了改变。从而进一步引出了图形的平移与旋转,这种循序渐进的教学方法,能逐步的打开学生的思维,提高学生的兴趣,同时也让学生更容易的接受新的知识。
我想这就是一个新思维,新教学方法,从心理上,抓住学生的兴趣,逐步引导,来达到一种传输知识和开发兴趣的过程。
数学教学设计13
教学目标:
1、通过观察、操作、体会比例尺产生的必要性和按相同的比扩大或缩小的实际意义。
2、通过图形的放缩,结合具体情境,感受图形的相似。
教学重点:目标1、2。
教学难点:目标2。
教学过程:
活动一、创设情境
同学们做了一张贺卡,准备母亲节的时候送给妈妈们,这张贺卡长是6厘米,宽是4厘米。笑笑、淘气、小斌分别在方格纸上画了贺卡的示意图,现在请同学们观察谁画的像。
1、出示图。
2、观察图,同桌互相交流。
3、汇报。
4、小组讨论:为什么同样大小的贺卡,却画出大小不同的长方形,而且有的像有的不像呢?他们是怎么画的?
5、小组汇报
笑笑:我画的图,宽1厘米相当于实际的4厘米,长1、5厘米相当于实际的6厘米。
淘气:卡片的长和宽的比是6:4、也就是3:2,所以,我画的图长和宽的比也是3:2。
小斌:只要长比宽长一些就行。
6、画的图的长和宽与原来的长和宽有什么关系?
得出:只要长和宽都按相同的比(可以有两个意思,一是图中的长与实际的长的比和图中的宽与实际的宽的比相等,二是图中的长和宽的`比与实际的长和宽的比相等)来画,画的图才像。长方形画成较小的长方形,首先可以量出原来的长和宽,再将它们的长和宽缩小相同的倍数,才能画的像。
活动二、画一画
把下面的图放大,比一比谁画得像。
1、理解题意。
2、学生独立完成。
3、小组内交流。
4、汇报,全班交流。
活动三、探究活动
1、学生独立完成。
2、小组交流,汇报。
数学教学设计14
教学内容:
神奇的扑克
教学内容:
在学生初步了解,年月日、季度的概念后,寻找历法与扑克之间的关系。
教学目标:
1、通过对
2、调动学生丰富的联想,养成一种思考的习惯。
教学重难点:
教学过程:
一、谈话引入
师:同学们,这个你们一定见过吧!这是我们生活中比较常见的
生:......
(教师补充,引发学生的好奇心。)
师:
生:......
二、新课
1、桃、心、梅、方4种花色可以代表一年四季春、夏、秋、冬
2、大王=太阳小王=月亮红=白天黑=夜晚
3、A=1 2=2 3=3 4=4 5=5 6=6 7=7 8=8 9=9 10=10 J=11 Q=12 K=13大王=1小王=1
4、所有牌的和+小王=平年的.天数
所有牌的和+小王+大王=闰年的天数
5、扑克中的K、Q、J共有12张,3×4=12,表示一年有12个月。
6、365÷7≈52一年有52个星期。54张牌中除去大王、小王有52张是正牌,表示一年有52个星期。
7、一种花色的和=一个季度的天数。一种花色有13张牌=一个季度有13个星期
三、小结
生活中有很多的数学,他每时每刻都在我们的身边出现,只是我们大家没有注意到。请大家都要学会留心观察,做生活的有心人。
数学教学设计15
教学目标
1、使学生借助直观图,利用集合的思想方法解决简单的实际问题。
2、让学生进一步感知集合图的价值,培养学生用不同的方法解决问题的意识。
3、培养学生善于观察、善于思考、养成良好的学习习惯。
4、使学生感受数学在现实生活中的广泛应用,尝试用数学的方法来解决实际生活中的问题。
教学重点
进一步感知集合图的价值,培养学生用不同的方法解决问题的意识。
教学难点
培养学生善于观察、善于思考,养成良好的学习习惯。
教具
准备课件。
教学过程
教学设计个性化调整或反思
一、创设情境,激趣导入。
师:上节课学习的借助集合图分析问题的方法你学会了吗?有什么感想?
生:用画图的方法解决问题更容易理解。
师:今天我们就一起来看看大家掌握的情况怎么样。
二、探究体验,经历过程。
师:阅读下面的文字,说说你知道了什么》(出示第107页第6题)
生:知道了3个小朋友比赛写出带“春”字的成语的个数分别是多少。
师:读完题,你觉得怎么样呢?
生:这道题的信息很多,有点乱。
师:对于这样的问题,你想怎样分析解答呢?
生:也许画图可以帮助我们分析题意吧。
师:用你喜欢的方法分析理解之后尝试解答。
学生尝试独立解答问题,教师巡视了解情况。
组织学生交流。
求小刚和小佳一共写出多少个成语,首先要找出与这两个人所写成语有关的条件:“小刚写出了15个,小佳写出了8个”,且“小佳写出的8个成语小刚都写出来了”,可以画图表示为......
所以小刚和小佳一共写出的'成语个数是15个。
要求小刚和小红一共写出了多少个成语,同样首先要找出与这两个人所写成语有关的条件:“小刚写出了15个成语”,“小红写出了10个”,且“小红写出的成语中有5个小刚也写出来了”。也就是说他们两人写出的成语中有5个是重复的,可以画图表示为......
所以说小刚和小红一共写出的成语个数是15+10-5=20(个)。
……
对于解答正确的学生给予表扬鼓励。
师:通过练习题的解答,你受到了什么启发?
生:面对很多信息时要思考清楚了再列式计算。
三、总结提升。
师:在今天的学习中,你有什么收获?
四、课堂作业。
1、同学们排队做操,小明排在从前数第9个,从后数第7个,小明这一排一共有多少个同学?
2、三年级一班的50个同学中,每人至少喜欢一门课程,喜欢数学的有37人,喜欢语文的有35人,那么这个班级喜欢语文又喜欢数学的有多少人?
【数学教学设计】相关文章:
数学教学设计06-20
幼儿数学教学设计02-15
数学《平移》教学设计07-06
小学数学教学设计06-28
数学教学设计模板07-24
数学教学设计及反思07-27
《数学广角》教学设计05-07
初中数学教学设计11-08
大班数学教学设计05-11
数学《什么是面积》教学设计06-24