圆柱的表面积教学设计优秀

时间:2024-05-09 08:20:14 教学设计 我要投稿
  • 相关推荐

圆柱的表面积教学设计优秀

  作为一名人民教师,常常需要准备教学设计,教学设计是把教学原理转化为教学材料和教学活动的计划。优秀的教学设计都具备一些什么特点呢?下面是小编整理的圆柱的表面积教学设计优秀,仅供参考,大家一起来看看吧。

圆柱的表面积教学设计优秀

圆柱的表面积教学设计优秀1

  教学目标:

  1、初步认识圆柱的基础上理解圆柱的侧面积和表面积的含义,掌握圆柱侧面积和表面积的计算方法,会正确计算圆柱的侧面积和表面积,能解决一些有关实际生活的问题。

  2、学生良好的空间观念和解决简单的实际问题的能力。

  3、通过实践操作,在学生理解圆柱侧面积和表面积的含义的同时,培养学生的理解能力和探索意识。

  教学重点:

  掌握圆柱侧面积和表面积的计算方法。

  教学难点:

  运用所学的知识解决简单的实际问题。

  教学过程:

  一、复习

  1、指名学生说出圆柱的特征.

  2、口头回答下面问题.(删掉)

  (1)一个圆形花池,直径是5米,周长是多少?

  (2)长方形的面积怎样计算?

  板书:长方形的面积=长宽.

  3、理解圆柱表面积的含义.

  (1)让学生把自己制作的。圆柱模型展开,观察一下,圆柱的`表面由哪几个部分组成?(通过操作,使学生认识到:圆柱的表面由上下两个底面和侧面组成。)

  (2)圆柱的表面积是指圆柱表面的面积,也就是圆柱的侧面积加上两个底面的面积。

  公式:圆柱的表面积=圆柱的侧面积+底面积2

  二、圆柱的侧面积。

  1、圆柱面积的认识

  (1)圆柱的侧面积,顾名思义,也就是圆柱侧面的面积。

  (2)出示圆柱的展开图:这个展开后的长方形的面积和圆柱的侧面积有什么关系呢?

  (学生观察很容易看到这个长方形的面积等于圆柱的侧面积)

  (3)那么,圆柱的侧面积应该怎样计算呢?(引导学生根据展开后的长方形的长和宽与圆柱底面周长和高的关系,可以知道:圆柱的侧面积=底面周长高)

  2、侧面积练习:练习七第5题

  (1)学生审题,回答下面的问题

  ①x这两道题分别已知什么,求什么?

  ②x计算结果要注意什么?

  (2)指定一名学生板演,其他学生在练习本上做.教师行间巡视,注意发现学生计算中的错误,并及时纠正。

  (3)小结:要计算圆柱的侧面积,必须知道圆柱底面周长和高这两个条件,有时题里只给出直径或半径,底面周长这个条件可以通过计算得到,在解题前要注意看清题意再列式。

圆柱的表面积教学设计优秀2

  教学目标

  圆柱表面积的,掌握圆柱表面积的计算方法,并能正确地计算圆柱的表面积。会解决简单的实际问题。

  教学重点:

  掌握表面积的计算方法

  教学难点:

  运用所学的知识解决简单的实际问题

  教具准备:

  圆柱的展开图

  教学过程:

  一、复习

  1、指名学生说出圆柱的特征。

  2、圆柱的侧面积=底面周长高

  3、计算下面各圆柱的侧面积。

  (1)底面2.5周长米,高0.6米。

  (2)底面直径4厘米,高10厘米。

  (3)底面半径1.5分米,高8分米。

  4、提问:圆柱的侧面积加两个底面的面积就圆柱的什么?(表面积)

  二、教学表面积。

  那么,圆柱的表面积是什么?明确:圆柱的表面.积是指圆柱表面的面积,也就是圆柱的侧面积加上两个底面的面积。

  板书:圆柱的表面积=圆柱侧面积+两个底面的面积

  1、教学例2。

  出示例2的题目:一个圆柱的高是4.5分米,底面半径是2分米,它的表面积是多少?

  (1)这道题已知什么?求什么?要求圆柱的表面积,应该先求什么?后求什么?

  (2)我们可以根据已知条件画出这个圆柱。随后教师出示圆柱模型,将数据标在图上。现在我们把这个圆柱展开。出示展开图,如下:

  2、小结:计算表面积时,一定要分步计算。先求什么,后求什么,再求什么。(提问)

  3、出示试一试:要做一个没有盖的。圆柱形铁皮水桶,高50厘米,底面直径为30厘米,至少需要多少铁皮?(得数保留整数)

  (1)这道题已知什么?求什么?这个水桶是没有盖的,说明了什么?如果把做这个水桶的'铁皮展开,会有哪几部分?

  (2)要计算做这个水桶需要多少铁皮,应该分哪几步?

  教师行间巡视,注意察看最后的得数是否计算正确。

  (3)指出:这道题使用的材料要比计算得到的结果多一些。因此,这里不能用四舍五入法取近似值。这道题要保留整百平方厘米,省略的十位上即使是4或比4小,都要向前一位进1。这种取近似值的方法叫做进一法。

  三、课堂小结。

  在实际应用中计算圆柱形物体的表面积,要根据实际情况计算各部分的面积。如计算烟筒用铁皮只求一个侧面积,水桶用铁皮是侧面积加上一个底面积,油桶用铁皮是侧面积加上两个底面积,求用料多少,一般采用进一法取值,以保证原材料够用。

  四、巩固练习。

  练一练第1~4题。

圆柱的表面积教学设计优秀3

  一、学习目标:

  1、学习圆柱的侧面积和表面积的含义,并掌握圆柱侧面积和表面积的计算方法。

  2、会正确计算圆柱的表面积和侧面积,能解决一些有关实际生活的问题。

  二、学习重点:

  掌握圆柱侧面积和表面积的计算方法。

  三、学习难点:

  运用所学的知识解决简单的实际问题。

  四、学习过程:

  (一)、旧知复习

  1、圆柱有几个面?分别是x、x和x。

  2、底面是x形,它的面积=x。

  3、侧面是一个曲面,沿着它的高剪开,展开后得到一个x形。它的长等于圆柱的x,宽等于圆柱的x。

  4、一个圆形水池,直径是5米,沿着水池走一圈是多少米?

  (二)列式为

  1、圆柱的'侧面积

  (1)圆柱的侧面积指的是什么?

  (2)圆柱的侧面积的计算方法:

  圆柱的侧面展开后是一个长方形,这个长方形的面积就等于圆柱的侧面积。因为长方形的面积=x,所以圆柱的侧面积=x。

  (3)侧面积的练习

  求下面各圆柱的侧面积。

  ①底面周长是1.6m,高0.7m。

  ②底面半径是3.2dm,高5dm。

  小结:要计算圆柱的侧面积,必须知道圆柱的x和x这两个条件,有时题里只给出直径或半径,底面周长这个条件可以通过计算得到,在解题前要注意看清题意再列式。

  2、圆柱的表面积

  (1)圆柱的表面是由x和x组成。

  (2)圆柱的表面积的计算方法:

  圆柱的表面积=

  (3)圆柱的表面积练习题

  一顶圆柱形厨师帽,高28cm,帽顶直径是20cm,做这样一顶帽子需要用多少面料?(得数保留整十平方厘米)

  分析,理解题意:求需要用多少面料,就是求帽子的x。需要注意的是厨师帽没有下底面,说明它只有x个底面。

  列式计算:

  ①x帽子的侧面积=

  ②x帽顶的面积=

  ③x这顶帽子需要用面料=

  小结:在实际应用中计算圆柱形物体的表面积,要根据实际情况计算各部分的面积。如计算烟囱用铁皮只求一个侧面积;水桶用铁皮是侧面积+一个底面积;油桶用铁皮是侧面积+2个底面积。求用料多少,一般采用进一法取值,以保证原材料够用。

  3、巩固练习

  一个圆柱底面半径是2dm,高是4.5dm,求它的表面积。

  4、总结:通过这节课的学习,你掌握了什么知识?

  圆柱的侧面积

  圆柱的表面积

  五、教学结束:

  布置学生课下复习本节课内容。

圆柱的表面积教学设计优秀4

  教学目标

  1.能根据具体情境,灵活运用圆柱表面积的计算方法解决生活中一些简单的问题,感受到数学与生活的密切联系。

  2.通过想象、操作等活动,知道圆柱侧面展开后可以是一个长方形,加深对圆柱特征的认识,发展空间观念。

  3.结合具体情境和动手操作,探索圆柱侧面积的计算方法,掌握圆柱侧面积和表面积的计算方法,能正确计算圆柱的侧面积和表面积。

  教学重点

  认识圆柱侧面展开图的多样性。

  教学难点

  能够将展开图与圆柱体的'各部分建立联系,并推导出圆柱侧面积、表面积的计算公式。

  教学用具

  课件、圆柱体的瓶子、剪子

  教学过程

  一、创设情境,引起兴趣。

  拿出圆柱体茶叶罐,谁能说说圆柱由哪几部分组成的?想一想工人叔叔做这个茶叶罐是怎样下料的?(学生会说出做两个圆形的底面再加一个侧面)那么大家猜猜侧面是怎样做成的呢?(说说自己的猜想)

  二、自主探究,发现问题

  研究圆柱侧面积:

  1.独立操作:利用手中的材料(纸质小圆柱,长方形纸,剪刀),用自己喜欢的方式验证刚才的猜想。

  2.观察对比:观察展开的图形各部分与圆柱体有什么关系?

  3.小组交流:能用已有的知识计算它的面积吗?

  4.小组汇报。x(选出一个学生已经展开的图形贴到黑板上)

  重点感受:圆柱体侧面如果沿着高展开是一个长方形。(这里要强调沿着高剪)这个长方形与圆柱体上的那个面有什么关系?(长方形的长是圆柱体底面周长、长方形的宽是圆柱体的高)

  长方形的面积=圆柱的侧面积即x长宽x=底面周长高,所以,圆柱的侧面积=底面周长高xSx侧x==xCxh

  如果已知底面半径为r,圆柱的侧面积公式也可以写成:S侧=2rh

  如果圆柱展开是平行四边形,是否也适用呢?

  学生动手操作,动笔验证,得出了同样适用的结论。(因为刚才学生是用自己喜欢的方式剪开的,所以可能已经出现了这种情况。此时可以让已经得出平行四边形的学生介绍一下他的剪法,然后大家拿出准备好的圆柱纸盒用此法展开)

  研究圆柱表面积:

  1.现在请大家试着求出这个圆柱体茶叶罐用料多少。

  学生测量,计算表面积。

  2.圆柱体的表面积怎样求呢?

  得出结论:圆柱的表面积=x圆柱的侧面积+底面积2

  3.动画:圆柱体表面展开过程

  三、实际应用

  1.解决书上的例题。

  2.填空。

  圆柱的侧面沿着高展开可能是(x)形,也可能是(x)形。第二种情况是因为(x)。

  3.要求一个圆柱的表面积,一般需要知道哪些条件(x)。

  4.教材第六页试一试。

【圆柱的表面积教学设计优秀】相关文章:

圆柱表面积教学设计10-12

《圆柱的表面积》教学设计08-29

圆柱的表面积教学反思12-14

《圆柱的体积》教学设计06-26

《圆柱的体积》教学设计15篇04-10

《圆柱的体积》教学设计(15篇)06-05

长方体的表面积教学设计02-27

《圆柱的体积》教学反思02-16

圆柱的体积教学反思04-02

《圆柱的认识》教学反思04-06