《简易方程》教学设计

时间:2024-08-29 15:00:11 教学设计 我要投稿
  • 相关推荐

《简易方程》教学设计

  作为一名教师,时常要开展教学设计的准备工作,教学设计是教育技术的组成部分,它的功能在于运用系统方法设计教学过程,使之成为一种具有操作性的程序。你知道什么样的教学设计才能切实有效地帮助到我们吗?下面是小编精心整理的《简易方程》教学设计,仅供参考,大家一起来看看吧。

《简易方程》教学设计

《简易方程》教学设计1

  教学内容:

  数学书P59及“做一做”,练习十一第5-7题。

  教学目标:

  1、结合具体图例,根据等式不变的规律会解方程。

  2、掌握解方程的格式和写法。

  3、进一步提高学生分析、迁移的能力。

  教学重难点:

  掌握解方程的方法。

  教学过程:

  一、导入新课

  前面,我们学习了等式保持不变的规律,等式在哪些情况下变换仍然保持不变呢?等式这些规律在方程中同样适用吗?完全可以,因为方程就是等式,今天我们将学习如何利用等式保持不变的规律来解方程。板书:解方程。

  二、新知学习

  (一)教学例1

  出示例1,从图中可以获取哪些信息?图中表示了什么样的等量关系?盒子中的皮球与外面的3皮个球加起来共有9个,方程怎么列?得到x+3=9

  要求盒子中一共有多少个皮球,也就是求x等于什么,我们该怎么利用等式保持不变的规律来求出方程的解呢?

  抽答。

  方程两边同时减去一个3,左右两边仍然相等。板书:x+3-3=9-3

  化简,即得: x=6

  这就是方程的解,谁再来回顾一下我们是怎样解方程的?

  左右两边同时减去的为什么是3,而不是其它数呢?因为,两边减去3以后,左边刚好剩下一个x,这样,右边就刚好是x的值。因此,解方程说得实际一点就是通过等式的变换,如何使方程的一边只剩下一个x即可。

  追问:x=6带不带单位呢?让学生明白x在这里只代表一个数值,因此不带单位。

  要检验x=6是不是正确的'答案,还需要验算。怎么验算呢?可抽学生回答。

  板书:方程左边=x+3

  =6+3

  =9

  =方程右边

  所以, x=6是方程的解。

  小结:通过刚才解方程的过程,我们知道了在方程的左右两边同时减去一个相同的数,左右两边仍然相等。不过需要注意的是,在书写的过程中写的都是等式,而不是递等式。

  (二)教学例2

  利用等式不变的规律,我们再来解一个方程。

  出示方程:3x=18,怎样才能求到1个x是多少呢?同桌的同学互相讨论,如有问题,可以出示书上的示意图帮助分析。

  抽答,在方程两边同时除以3即可。为什么两边同时除以的是3,而不是其它数呢?刚好把左边变成1个x。让学生打开书59页,把例2中的解题过程补充完整。

  展示、订正。

  通过,刚才的学习,我们知道了在方程的两边同时减去一个相同的数或同时除以一个不为0的数,左右两边仍然相等。这是我们解方程常用的两种方法,想不想用它们来试一试呢?

  (三)反馈练习

  1、完成“做一做”的第1题,先找到等量关系,再列方程,解方程。集体评讲。

  2、思考“想一想”:如果方程两边同时加上或乘上一个数,左右两边还相等吗?依据是什么?等式保持不变的规律。

  试着解方程:x-2.4=6 x÷9=0.7(强调验算)

  (四)课堂作业:“做一做”第2题。

  三、课堂小结。

  这节课学习了什么?讨论:什么时候应该在方程的两边加,什么时候该减,什么时候该乘,什么时候该除呢?

  四、作业:练习十一5—7题。

《简易方程》教学设计2

  【教学内容】

  教材第67页例1、“做一做”和练习十五第1、2题。

  【教学目标】

  1.根据等式的性质,使学生初步掌握解方程及方程检验的方法,并理解方程和方程的解的概念。

  2.培养学生的分析能力及应用所学知识解决实际问题的能力。

  3.帮助学生养成自觉检验的良好习惯。

  【重点难点】

理解并掌握解方程的方法。

  【教学准备】

实物投影及多媒体课件。

  【复习导入】

  1.提问:什么是方程?等式有什么性质?

  2.你会根据下面的图形列出方程吗?

  3.填一填。

  4.导入新课:前面两节课我们借助天平平衡,学习了方程的意义和等式的性质,今天这节课我们继续研究与方程有关的新知识。

  【新课讲授】

  1.方程的解与解方程的概念。

  (1)理解“方程的解”和“解方程”的意义。

  教师演示:先在左盘放上一个重100g的杯子,再往杯子里加入xg的水,天平失去平衡。

  提问:怎样才能使天平保持平衡呢?

  请学生到台前操作:天平右边的砝码加到250g时,天平平衡。

  提问:你能根据天平两边物体质量的相等关系列出方程吗?

  根据学生的.回答,板书:100+x=250

  启发:怎样才能求出方程中未知数x的值呢?你有什么办法?把你的办法和小组的同学交流。

  学生活动后,组织反馈。

  方法一:根据加减法之间的关系。

  因为250-100=150,所以x=150。

  方法二:根据数的组成。

  因为100+150=250,所以x=150。

  方法三:根据等式的性质。

  因为100+x-100=250-100,所以x=150。

  讲解:当x=150时,100+x=250这个方程的左右两边相等,像这样使方程左右两边相等的未知数的值,叫做方程的解。求方程解的过程叫解方程。这节课我们就来学习解方程。(出示课题)

  (2)比较“方程的解”和“解方程”。

  提问:方程的解与解方程到底有什么不同呢?

  根据学生的交流情况,引导小结:方程的解是一个数,解方程是一个过程。 那么你怎样检验x的值是不是方程的解呢?

  学生汇报。

  (3)即时巩固。

  完成教材第67页“做一做”第2小题。

  2.教学例1。

  (1)出示例1题图。

  师:今天我们学习怎样利用天平平衡的原理来解方程。请同学们观察思考:怎样才能使天平左右两边只剩“x”,而保持天平平衡呢?

  引导学生思考:根据在天平两边同时拿走相同的物品,天平仍然平衡的道理,即方程左右两边同时减去一个数,仍然相等。

  追问:为什么要从方程两边同时减去3,而不是其他数?

  结合学生的回答,教师板书:

  x+3=9

  x+3-3=9-3

  x=6

  提问:解方程的过程就是这样的吗?还应该注意些什么呢?

  讲解:求方程中未知数x的值时,要先写“解”,表示下面的过程是求未知数x的值的过程,再在方程的两边都减去3,求出方程中未知数x的值。写出这一过程时,要注意把等号对齐。(示范板书解方程的过程)

  解:x+3=9

  x+3-3=9-3

  x=6

  引导:x=6是不是正确的答案呢?我们可以通过检验来判断:把x=6代入原方程,看看左右两边是不是相等。

  提问:如果等式的左右两边相等,说明什么?(说明答案是正确的)如果不相等呢?(说明答案是错误的)请同学们用这样的方法试着检验一下。(随学生的回答扼要板书检验过程)

  师:像刚才这样,求方程中未知数的值的过程,叫做解方程。请同学们回忆刚才解方程的过程,你认为解方程时要注意什么?

  (2)即时巩固。

  解下列方程,并检验。

  x+4.5=9100+x=100

  师强调:解方程时注意等号要对齐,检验时过程要写清楚,养成检验的良好习惯。

  教师提问:通过例1我们知道,方程两边同时减去一个相等的数,方程左右两边相等。请同学们想一想,如果方程两边同时加上一个数(0除外),左右两边还相等吗?

  【课堂作业】

  1.完成课本第67页“做一做”第1题。

  2.解下列方程,并检验。

  【课堂小结】

  提问:这节课你学习了什么?还有什么收获

  小结:通过刚才解方程的过程,我们知道了方程两边同时加上或减去一个相同的数,左右两边仍然相等。需要注意的是,在书写过程中写的都是等式,不是递等式。

  【课后作业】

  完成课本练习十五的第1、2题。

《简易方程》教学设计3

  教学目标:

  1.使学生初步学会

  这一类简易方程的解法。

  2.理解这类方程的格式。

  3.进一步掌握解方程的格式。

  教学重点:

  掌握解

  这一类方程的解法。

  教学难点:

  理解这一类方程的算理。

  教学步骤:

  一、复习引入

  (一)复习方程的意义。

  1.什么叫方程?

  2.什么叫解方程?

  (二)用方程表示下面的数量关系。

  1.

  与4的和等于40。

  2.

  的3倍等于40。

  3.

  的3倍加上4等于40。

  二、新授教学

  (一)教学例2

  例2。看图列方程,并求出方程的解。

  1.读题,理解题意。

  2.分析图意,找等量关系。

  3.教师提问

  (1)观察图形你都知道了什么?

  (2)怎样列方程?

  4.列方程并解答。

  (1)教师板书:3x=1500

  (2)教师提问:应当先求什么?解这个方程要先算哪一步?

  5.学生独立解答。

  6.集体订正,板书全部解题过程。

  3x=1500

  解: x=15003

  x=500

  检验:把x=500代入原方程,

  左边=3500,右边=1500,

  左边=右边,

  所以x=500 是原方程的解。

  7.练习:

  (二)教学例3

  例3。解方程3x+100 =1000

  1.思考

  (1)例3与例2有什么相同点?有什么不同点?

  (2)应该先算什么,再算什么,最后算什么?

  2.学生独立解答,集体订正。

  3.小结:解这一类方程,要先根据四则运算的顺序,把方程中包含的计算算出来,再把

  与因数的积看成是一个数,根据四则运算各部分间的关系一步步求出解。

  4.练习:解方程

  三、课堂小结

  今天你学习的.解方程与以前所学的解方程有什么不同?

  四、巩固练习

  (一)口头解下列方程,并说出每一步的根据。

  (二)解下列方程,并检验。

  (三)在0.5、1.5、2.5、3.5、4这五个数中,

  哪个数是方程0.5

  -1.5=0.5的解?

  哪个数是方程220.5-2

  =4的解?

  思考:怎样做比较简单?

  五、课后作业

  解方程

《简易方程》教学设计4

  教具准备:

  天平及相关物品。(也可以将插图制作成课件让学生逐步观察思考)

  教学过程:

  一、导入新课:同学们用天平做过实验吗?今天我们就要用天平去发现一些重要的规律,有信心吗?

  二、新知探究

  (一)探寻发现“天平保持平衡的规律1”。

  第一步,出示天平,左盘放一茶壶,右盘放两茶杯,天平保持平衡。问:这说明什么?如果设一把茶壶重a克,1个茶杯重b克,则可以用一个等式来表示:即a=2b(板),

  第二步,问:想一想,怎样变换能使天平仍然保持平衡呢?待学生思考片刻,进而问:往两边各放一个茶杯,天平会发生什么变化?教师演示加以验证,在已平衡的天平两边同时增加一个相同的杯子,天平保持平衡。这个过程可以表示为a+b=2b+b 。

  第三步,问:如果两边各放上2个茶杯,天平还保持平衡?两边各放上同样的一个茶壶呢?学生回答后,老师一一演示验证。

  第四步,想一想,怎样变换能使天平保持平衡?天平两边增加同样的物品,天平保持平衡。如果天平两边减少同样的物品,天平会保持平衡吗?

  第五步,在第三步的基础上同时减少一个茶壶,天平保持平衡,用式子表示就是2a-a=2b+a-a 。因此天平保持平衡的规律概括起来可以怎么说?天平两边增加或减少同样的物品,天平会保持平衡。(课件)

  第六步,应用,进一步验证。展示数学书P55页第2幅图的场景,1个花盆和几个花瓶同样重呢?该怎么办?两边同时减少一个花瓶,天平保持平衡。

  (二)探寻发现“天平保持平衡的规律2”。

  第一步,出示天平,左盘放一瓶墨水,右盘放两个铅笔盒,天平保持平衡。一瓶墨水等于两个铅笔盒的质量,如果设一瓶墨水重c克,1个铅笔盒重d克,则可以用一个等式来表示:即c=2d(板),

  第二步,问:想一想,如果在左边再放上1瓶墨水,右边再放上2个铅笔盒,天平还保持平衡吗?验证,天平两边加的东西不同,数量也不同,为什么还能保持平衡呢?学生可能会说,因为两边增加的质量相同,肯定;同时引导,天平左边的质量在原来的基础上发生了什么变化?(扩大了2倍),右边呢?(也扩大了两倍)因此,天平两边尽管所增加的东西不同,数量不同,但两边质量所发生的变化是相同的,都扩大了2倍,所以天平仍然保持平衡。用式子表示就是c×2=2d×2 。

  第三步,刚才的演示反过来,就是天平两边同时缩小相同的倍数,天平保持平衡,用式子表示就是2c÷2=4d÷2。因此,天平除了在两边同时增加或减少同样的物品会保持平衡外,还可怎么变换也可以保持平衡?归纳得出:天平两边物品的质量同时扩大或缩小相同的倍数,天平保持平衡。[

  第四步,进一步验证,出示P56的情景,问要求1个排球和几个皮球同样重该怎么办?两边质量同时缩小2倍,即把两边的球都平均分成2份,保留其中的一份,按其操作,天平保持平衡,得出结论:1个排球和3个皮球同样重。

  (三)小结天平保持平衡的变换规律,引出等式不变的规律。

  通过刚才的实验,我们发现了什么,谁来总结一下。

  得出天平保持平衡的变换规律:

  (1)天平两边同时增加或减少同样的物品,天平保持平衡;

  (2)天平两边的质量同时扩大或缩小相同的倍数,天平保持平衡。

  老师引导:我们可以发现,天平保持平衡时可以用一个等式来表示,当天平两边发生变化时,等式的两边也在发生变化,天平保持平衡,等式也保持不变。从天平保持平衡的规律,我们可以发现等式保持不变的规律吗?想一想,四人小组讨论。

  交流,发现:等式保持不变的规律:

  (1)等式两边都加上或减去相同的`数,等式保持不变;

  (2)等式两边都乘或除以相同的数(0除外),等式不变。

  三、练习。

  实物演示并判断:(准备8袋花生,4袋盐)

  天平两端分别放有一袋500克的盐和两袋250克的花生。

  1、当两边各增加3袋同样的花生(250克/袋)时,天平是否保持平衡?为什么?

  2、在“1”的基础上,现在将把天平两端的东西减少,怎样变化?可使天平依然保持平衡?怎么想的?(可抽学生上台动手操作。)

  3、假如天平两端只能加与先前完全一样的东西,要保持平衡可以怎么做?怎么想的?

  4、一端放有两袋1千克的白糖,另一端放有4袋500克的盐,问一袋白糖与几袋盐同样重,怎么想的?

  四:小结。

  有什么收获?还有什么问题?

  教学内容:数学书P55-56及“做一做”。

  教学目标:

  1、通过天平演示保持平衡的几种变换情况,让学生初步认识等式的基本性质。

  2、利用观察天平保持平衡所发现的规律能直接判断天平变化后能否保持平衡。

  3、培养学生观察与概括、比较与分析的能力。

《简易方程》教学设计5

  【教学内容】

  教材第69页例4、例5、“做一做”和练习十五的第8-14题。

  【教学目标】

  1.进一步掌握转化的思路,正确解答二步计算的方程。

  2.在掌握ax±b=c和a(x±b)=c的方程解法的基础上,学会找出等量关系,用列方程的方法解答二步计算的文字题。

  3.养成分析的习惯,训练严谨的学习态度。 培养学生用不同的方法解决问题的思维方式。

  【重点难点】

  1.掌握ax±b=c和a(x±b)=c的方程解法。

  2.看图找出等量关系,并根据等量关系列出方程解决问题。

  【教学准备】

  多媒体课件。

  【复习导入】

  1.解下列各方程,并说明解题的思路与解法根据。

  (1)3.8-x=2.9(2)5x=12.5

  学生独立完成后相互交流。

  小结:这两道题是最基础的解方程题目。根据等式的性质,就可以求解了。

  2.出示例4的情景图,学生思考:怎样列方程呢?

  学生相互讨论。

  这道题与以前学过的解方程有什么不一样的呢?(学生回答)那这节课我们一起来继续学习解方程。

  板书课题。

  【新课讲授】

  1.教学例4。

  (1)出示例4情景图。

  (2)如何列出方程呢?

  学生讨论,汇报。

  引导分析:先找出题中的已知与未知数量关系,列出等量关系式,再根据等量关系列出方程:

  等量关系式:图中有3盒铅笔和4支铅笔一共是40支,3盒铅笔+4支铅笔=40支铅笔,已知每盒铅笔x支,三盒共3x支。

  列方程为:3x+4=40

  (3)追问:这种方程该怎么解呢?

  学生尝试解题,然后说出解题思路。

  引导学生小结:可以把3x看作一个整体,就是三盒铅笔的总数,再利用等式的性质,左右同时减去4,就将方程变成了我们学过的一般方程:3x=36,然后左右同时除以3,得x=12。

  完整的解题过程:

  解:3x+4=40

  3x+4-4=40-4

  3x=36

  3x÷3=36÷3

  x=12

  答:每盒铅笔有12支。

  学生写出检验过程。

  (4)这样一类方程应该如何解呢?

  学生讨论后汇报交流。

  教师引导小结:先把含有未知数的.那一项看作是一个整体,利用等式的性质把方程变成只有两项,再求解。

  2.教学例5。

  (1)出示例5:解方程2(x-16)=8。

  (2)观察、讨论:这个方程能不能利用例4所学的方法解呢?

  学生讨论后交流。

  教师引导:可以把(x-16)看作是一个整体。

  学生尝试解题,指定一名学生板演,集体讲评。

  解方程2(x-16)=8。

  解:2(x-16)÷2=8÷2把什么当作一个整体?

  x-16=4

  x-16+16=4+16

  x=20

  学生完成检验过程。

  (3)想一想:还有没有其他的解法呢?

  学生分组讨论,然后汇报。

  引导小结:可以先把2(x-16)变成2x-32,及时提问:这一步运用什么定律?(学生回答:乘法分配律)那方程就变成了2x-32=8,再利用例4的方法解。

  学生独立写出解答过程。

  解方程2(x-16)=8。

  解:2x-32=8运用了什么运算定律?

  2x-32+32=8+32

  2x=40

  2x÷2=40÷2

  x=20

  检验:方程左边=2(20-16)

  =40-32

  =8=方程右边

  所以,x=20是方程的解。

  (4)引导学生小结:在解较复杂的方程时,可以先将一个式子当作一个整体,变成了一般方程再利用等式的性质求解,记住解完方程后要检验。

  【课堂巩固】

  完成课本第69页“做一做”。

  学生独立思考,独立完成解答过程,然后师生共同分析、讲解。

  【课堂小结】

  提问:同学们,这一节课你又学会了哪些类型的方程?有什么收获呢?

  小结:这节课,我们知道在解较复杂的方程时,可以先将一个式子当作一个整体,变成了一般方程再利用等式的性质求解,记住解完方程后要检验。

  【课后作业】

  1.完成教材第71~72页练习十五第8~14题。

《简易方程》教学设计6

  【教学内容】

  教材第78页例4,“做一做”和练习十七5~10题。

  【教学目标】

  1.学生通过自主探索、交流互助学会根据两个未知量之间的关系,列方程解答含有两个未知数的实际问题。

  2.学会用检验答案是否符合已知条件的方法,提高学生求解验证的能力。

  3.培养学生的主体意识、创新意识、合作意识,以及分析、观察能力和表达能力。

  4.让学生体验到生活中处处是数学,体验数学的应用价值和数学学习的乐趣。

  【重点难点】

  正确设未知数,找出等量关系列方程解决问题。

  【教学准备】

  教具:地球仪多媒体课件

  【复习导入】

  1.填空。

  (1)学校科技组的男同学人数是女同学的.3倍。设女同学有x人,则男同学有()人;设男同学有x人,则女同学有()人。

  (2)学校书法组有女同学x人,男同学人数是女同学的2.5倍。男同学有()人,一共有()人,男同学比女同学多()人。

  2.看图列方程,并求出方程的解。

  3.导入新课:这节课我们继续学习列稍复杂的方程解决实际问题。(出示课题)

  【新课讲授】

  1.情景导入。

  课件出示:转动着的地球。

  师:同学们,这就是我们人类赖以生存的地球,地球表面大部分的地方都被海洋所覆盖,海洋的面积要远远超出陆地的面积。因此,也有人把地球称为“水球”,所以,地球看上去是漂亮的深蓝色。那么你们想知道地球上的陆地面积、海洋面积究竟有多大吗?好,下面老师给你们提供一些信息。

  2.出示例4。

  地球的表面积为5.1亿平方千米,其中,海洋面积约为陆地面积的2.4倍。海洋面积和陆地面积分别是多少亿平方千米?

  3.分析,理解题意,找等量关系,列方程。

  师:请同学们先思考下面的问题:

  (1)题中有几个未知量?

  (2)设谁为x比较合适?为什么?

  (3)问题中包含有怎样的等量关系?

  (4)怎样列方程?

  汇报交流,总结:

  (1)题中有两个未知量,陆地面积和海洋面积。海洋面积约为陆地面积的2.4倍。

  (2)根据“海洋面积约为陆地面积的2.4倍”设未知数,陆地面积是x,海洋面积是2.4x。

  出示:(线段图)

  (3)根据“地球的表面积为5.1亿平方千米”,得到等量关系是海洋面积+陆地面积=地球表面积。

  (4)列方程是:x+2.4x=5.1

  讲解:用方程解,一般设“一倍量”为x,那么“几倍量”就可以用几x表示, 根据题中另一个条件找数量间的相等关系,然后列方程。

  课件出示:(配合教师小结出示)

  解:设陆地面积为x亿平方千米。

  那么海洋面积可以表示为2.4x亿平方千米。

  海洋面积+陆地面积=地球表面积

  x+2.4x=5.1

  4.解方程。

  师:会解这个方程吗?试一试吧。

  汇报,交流。

  (1+2.4)x=5.1(追问:根据是什么?)

  3.4x=5.1

  3.4x÷3.4=5.1÷3.4

  x=1.5

  讨论:1.5表示什么意思?海洋面积怎样求?

  学生自由发言。

  小结:求海洋面积有两种方法。

  方法一:5.1-1.5=3.6(亿平方千米)

  方法二:2.4x=2.4×1.5=3.6(亿平方千米)

  5.检验。

  师:我们做得对吗?如何检验呢?

  学生讨论,汇报。

  小结:检验有两种方法。

  第一种是用代入方程检验的方法:

  1.5+2.4×1.5=5.1

  第二种:用检查答案是否符合已知条件的方法来检验。

  1.5+3.6=5.1

  6.即时巩固。

  解方程:x+1.5x=5x-0.5x=30

  【课堂作业】

  完成课本第81页练习十七的第5~8题。

  【课堂小结】

  提问:这节课你学习了什么?题目中有两个未知数,怎样列方程解答?

  小结:第一,两个未知数怎么办?可以先选择其中一个设为x,列方程解,再求另一个。

  第二,两个已知数条件怎么用?可以把其中一个用来写含有字母的式子,表示另一个未知数,另一个用来列方程。

  第三,怎样验算?可以通过列式计算,检验两个得数的和及倍数关系是否符合已知条件。

  【课后作业】

  完成教材第81页练习十七第9~10题。

《简易方程》教学设计7

  教学内容:

  数学书P53-54及做一做,练习十一1-3题。

  教学目标:

  1、初步理解方程的意义,会判断一个式子是否是方程。

  2、会按要求用方程表示出数量关系。

  3、培养学生观察、比较、分析概括的能力。

  教学重难点:

  会用方程的意义去判断一个式子是否是方程。

  教具准备:

  天平、空水杯、水(可根据实际变换为其它实物)

  教学过程:

  一、导入新课

  今天我们上课要用到一种重要的称量工具,它是什么呢?对,它是天平。同学们对天平有哪些了解呢?天平由天平称与砝码组成,当放在两端托盘的物体的质量相等时,天平就会平衡,根据这个原理,从而称出物体的质量。

  二、新知学习

  1、实物演示,引出方程。

  操作天平:第一步,称出一只空杯子重100克,板书:1只空杯子=100克;

  第二步,往往空杯子里倒入约150毫升水(可在水中滴几滴红墨水),问:发现了什么?天平出现了倾斜,因为杯子和水的质量加起来比100克重,现在还需要增加砝码的质量。

  第三步,增加100克砝码,发现了什么?杯子和水比200克重。现在,水有多重,知道吗?如果将水设为x克,那么用一个式子该怎么表示杯子和水比200克重这个关系呢?100+x200。

  第四步,再增加100克砝码,天平往砝码这边倾斜。问:哪边重些?怎样用式子表示?让学生得出:100+x300.

  第五步,把一个100克的砝码换成50克,天平出现平衡。现在两边的质量怎样?用式子怎样表示?让学生得出:100+x=250。

  像这样含有求知数的等式,人们给它起了个名字,你们知道叫什么吗?对,叫方程。请大家试着写出一个方程。

  2、写方程,加深对方程的认识。

  学生试着写出各种各样的方程,再在全班展示,当然也有可能会出现一些不是方程的式子,教师应引导学生说出它不是方程的原因。

  看书第54页,看书上列出的一些方程,让学生读一读。然后小结:一个式子要是方程需要具备哪些条件?两个条件,一要是等式,二要含有求知数(即字母),这也是判断一个式子是不是方程的依据。

  3、反馈练习。

  完成做一做,在是方程的式子后面打上。对于不是方程的'几个式子要说明其理由。

  4、小结。

  这节课学习了什么?怎么判断一个式子是不是方程?

  提问:方程是不是等式?等式一定是方程吗?

  看课外阅读,了解有关方程产生的数学史。

  三、练习

  1、完成练习十一第2题,先让学生说出图意,再根据图意再列出相应的方程。

  2、独立完成第3题,评讲时,介绍什么叫数量关系要,然后让学生先说出各幅图中的数量关系,再说出相应的方程,同一幅图由于数量关系有不同的形式,因此方程形式也可能不同。

  四、作业

  练习十一第1题。

《简易方程》教学设计8

  【教学内容】

  教材第77页例3、“做一做”和练习十七的第1~4题。

  【教学目标】

  1.通过教学使学生掌握两积之和等于已知的总和和含有小括号的方程的解法,并会列方程解具有这种数量关系的应用题。

  2.培养学生分析问题的能力和用多种方法解决问题的能力。

  3.培养学生认真检验的良好习惯。

  【重点难点】

  寻找题目中的等量关系。

  【教学准备】

  教具:多媒体

  【复习导入】

  1.解方程。

  2x-3=5 4.5+3x=13.5

  2.妈妈买了2kg苹果和3kg梨,已知梨每千克2.8元,苹果每千克2.4元,妈妈一共要付多少钱?学生读题后,独立列式计算,并说出数量关系。

  苹果的总价+梨的总价=总钱数

  2.4×2+2.8×3=13.2(元)

  3.揭示课题:这节课我们继续学习实际问题与方程。(出示课题)

  【新课讲授】

  1.教学“列方程解两积之和的'应用题”。

  (1)出示情景图。

  每千克苹果多少元?

  (2)列方程并解方程。

  让学生独立写出等量关系,列方程并解方程。

  苹果的总价+梨的总价=总钱数

  解:设苹果每千克x元。

  2x+2.8×3=13.2

  2x+8.4=13.2

  2.教学例题3。

  出示例题3。

  把上面的例题改成例题3:妈妈买了苹果和梨各2kg,共付10.4元,已知梨每千克2.8元,苹果每千克多少钱?

  提问:这道题与上一题有什么异同?(这道题的数量关系和上个例题一样;只是部分数字进行了改动,解题方法也和上题一样)

  学生独立解答。

  (1)学生审题,说出解题思路。

  (2)口头列出方程:2x+2.8×2=10.4。

  (3)在课本上写出解答过程。

  全班交流汇报,教师引导总结解法:

  (1)用未知数x表示每千克苹果的价钱。

  (2)根据苹果的总价+梨的总价=总钱数列方程。2x表示苹果的总价,2.8×2表示梨的总钱数。

  (3)根据解2x+2.8×2=10.4这个方程的方法,把2.8×2先算出来,把2x看作一个整体,转化成我们学过的方程的类型来解方程。

  教师边讲解边板书。

  解:设苹果每千克x元。

  2x+2.8×2=10.4

  2x+5.6=10.4

  2x+5.6-5.6=10.4-5.6

  2x=4.8

  2x÷2=4.8÷2

  x=2.4

  (4)经检验,x=2.4是方程的解。

  3.探究第二种解法。

  提问:除了上面的方法外,还有什么方法?(学生独立思考后,试着用另一种方法列出方程,说出自己的思路)

  让学生说出数量关系,并列出方程。

  板书:(苹果的单价+梨的单价)×2=总钱数

  解:设苹果每千克x元。

  (x+2.8)×2=10.4

  讨论:这个方程怎样解?自己动手试一试。

  学生汇报交流。

  教师引导学生总结:在解这个方程时,可以把小括号内的2.8+x看作一个整体,先求出2.8+x等于多少,再求出x等于多少。

  板书:解:设苹果每千克x元。

  (2.8+x)×2=10.4

  (2.8+x)×2÷2=10.4÷2

  2.8+x=5.2

  2.8+x=5.2-2.8

  x=2.4

  4.比较两种解法。

  提问:例3中的两种解法列出的方程有什么联系吗?

  方程1:2x+2.8×2=10.4

  方程2:(2.8+x)×2=10.4

  学生自由发言。

  讲解:从第二个方程到第一个方程,实际是利用了乘法分配律;从第一个方程到第二个方程;实际上是应用了乘法分配律的逆运算。

  【课堂作业】

  1.完成教材第77页“做一做”。

  这道题,数量关系为两积之和的实际问题。已知四张门票共11元。从插图中可以看出,成人票、儿童票各2张。

  2.完成教材第80页练习十七的第1~3题。

  【课堂小结】

  提问:本节课你又学会了解哪些类型的方程?还有不明白的问题吗?

  小结:这节课我学会了两积之和等于已知的总和及含有小括号的方程的解法。

  【课后作业】

  教材第80页练习十七第4题。

《简易方程》教学设计9

  【教学内容】

  教材第68页例3、“做一做”和练习十五的第5、6、7题。

  【教学目标】

  1.使学生掌握列方程解应用题的基本方法和步骤。

  2.培养学生从问题出发寻找所需条件的分析能力。

  3.进一步提高学生计算、分析能力。

  【重点难点】

  1.正确的解方程的方法。

  2.正确的列出方程。

  【教学准备】

  多媒体课件。

  【复习导入】

  1.解方程。

  2x=1.6 x÷2.7

  2.导入新课:我们上节课学习了形如ax=b x÷a=b的方程的解法,这节课我们继续运用等式的性质解方程,并板书课题。

  【新课讲授】

  1.教学例3。

  (1)出示例3:解方程20-x=9。

  (2)学生思考并交流:这道题中是减去x,怎么办呢?

  (3)教师引导:把这个方程变成x+a的形式,方程左右两边同时加上x,左右两边相等。

  (4)学生独立写出解答过程,并检验。

  小组代表汇报交流,你是怎么想的?根据什么?(根据等式的性质,等式左右两边同时加上一个相同的`数,等式仍然相等。)

  (5)教师结合学生的汇报,讲解并板书。

  解:20-x=9

  20-x+x=9+x

  20=9+x

  9+x=20

  9+x-9=20-9

  x=11

  检验:方程左边=20-x

  =20-11

  =9=方程右边

  所以,x=11是方程的解。

  (6)自由讨论:解方程需要注意什么?

  学生汇报、交流。

  教师引导小结:根据等式的性质解方程时,要注意等号对齐,检验过程要写清楚,养成检验的良好习惯。

  【课堂巩固】

  完成课本第68页“做一做”第1题前面3小题、第2题中第1小题,将同学进行分组,每三名同学一组进行板演。首先各小组独立思考,完成解答过程。最后师生共同分析,讲解。

  答案1.x=1.4,x=5.8,x=13

  2. 4-x=1.2 x=2.8元

  【课堂小结】

  提问:通过本节课的学习,同学们学会了什么?有什么收获呢?

  小结:这节课我们学习了a-x=b的方程的解法,先把等式左右两边同时加上x,变为b+x=a,再按x+a=b的方程的解法求解。在解方程时要注意等号对齐,检验过程要写清楚,养成检验的良好习惯。

  【课后作业】

  教材第70~71页练习十五第5~7题。

《简易方程》教学设计10

  教材分析:

  “用字母表示数”是义务教育教科书人教版五年级上册第五单元《简易方程》中的第一部分内容。这部分内容是在学生已经学习了整数的加、减、乘、除四则运算以及常见的数量关系和几何计算公式的基础上进行的的。它是今后进一步学习简易方程、周长、面积、体积等字母公式的基础。它是学生学习数的概念方面的一次重大发展,是学生有算术到代数的重要转折点,也是学生进一步学习代数知识的基础。

  学情分析:

  1.学生已经接触过一些用字母表示的计算公式和预案算律,对简单的实际问题中的基本数量关系也比较熟悉,学生用字母表示数的必要性和作用已有了一定的感性认识,有一定的观察、分析、概括能力,这些都有助于学生的学习。

  2.学生已有生活经验和学习该内容的经验:学生对日常生活中使用字母表示电视台标、地名、组织等给人们带来许多方便的现象有一定的了解。

  3.学生学习该内容的困难:学生是第一次接触用字母表示数的方法,从熟悉的算式引出含有字母的式子,从具体的数到用字母表示数是认识上的'一次飞跃,对学生来说是相当困难的,也非常不适应。因此,教学中应充分利用现实情境,让学生再体会数量关系的基础上,理解用字母表示数的意义,体会用字母表示数的优越性。

  教学目标:

  1.在现实情境中,学习和理解字母表示数的意义,能结合具体情境,利用字母表示数进行表达与交流,体会用字母表示数的简洁性。

  2.在探索数量关系的过程中,进一步发展学生数感、符号感。

  3.通过数学活动来激起学生的学习热情,培养学习兴趣。

  教学设计特点:

  1、在现实情境中体验和理解用字母表示数的意义。

  利用向袋子里放笔的情境,让学生感受用字母表示数的必要性。

  2、在对比交流中,深化理解概念。

  利用前后袋子笔的数量关系,理解用字母表示数的意义。

  教学过程

  一、导入新课,提出问题

  直接出示课题。提问:你在哪些地方见过用字母表示的?

  学生举例,教师小结:在数学中也经常用字母表示数,看屏幕上“用字母表示数”,你能提出与这节课有关的问题吗?

  二、互动探究

  1.用字母表示数

  咱们班一共有()人,老师带来了()笔。

  情境一:现在老师在袋子里中放笔,向一号袋子里放1支,用数字1表示。放2支,用数字2表示,现在请一名学生偷偷的放笔后,老师放笔,你知道是几支笔吗?

  预设:学生用数字猜测

  提问:你们能确定这些答案是正确的吗?

  预设:学生用字母表示

  追问:你是怎么想的?

  讨论分析:我们不确定里面有几支笔,但对于a你知道些什么(引出范围)

  2.用字母表示数量关系

  情境二:向袋子里加2支笔

  提问:现在你能确定里面有几支笔吗?那你怎么表示呢?

  预设:a

  反馈:用a表示合适吗?

  另一个字母b

  反馈:与原来袋子不同了,不能用a表示(不同的未知数用不同的字母表示)

  a+1

  比较分析:b和a+1哪个更好

  反馈:a+1既能表示2号袋子里的笔,又能表示比1号袋子多了一支笔

  练习:天凝小学503班男生人数为a人,女生人数为a+6人,你能得到哪些数学信息呢?

  爸爸比小红的年龄大30岁,用你自己喜欢的方式表示爸爸和小红的年龄。

  假设小红的年龄是10岁,你知道爸爸的年龄吗?

  3.用字母表示计算公式

  每支笔为2元,你知道老师买这笔需要多少钱吗?全校所有需要的笔呢?(2n)

  刚才我们用2n表示全校所有笔的价钱,4m你认为可以解决什么问题呢?

《简易方程》教学设计11

  教材简介:

  本单元的主要学习内容是用字母表示数和解简易方程,以及简易方程在解决一些实际问题中的运用。

  本单元的内容分为两节,第一节的主要内容是用字母表示数、表示运算定律、计算公式和数量关系。第二节的主要内容是方程的意义,等式的基本性质和解简易方程,以及列方程解决一些比较简单的实际问题。这些内容的编排体系如下表(见底部附件)。

  单元教学目标:

  1、使学生初步认识用字母表示数的意义和作用,能够用字母表示学过的运算定律和计算公式,能够在具体的情境中用字母表示常见的数量关系。

  2、使学生初步了解方程的意义,初步理解等式的基本性质,能用等式的性质解简易方程

  3、使学生感受数学与现实生活的联系,初步学会列方程解决一些简单的实际问题。

  教学建议:

  1.关注由具体到一般的抽象概括过程。

  2.用好教材资源,适当扩展联系实际的范围。

  3.重视良好学习习惯的培养。

  课时安排:

  1.用字母表示数3课时

  2.解简易方程12课时

  第一课时:用字母表示数(一)

  教学内容:

  教材P44-P46例1-例3做一做,练习十第1-3题

  教学目的:

  1、使学生理解用字母表示数的意义和作用。

  2、能正确运用字母表示运算定律,表示长方形、正方形的周长、面积计算公式。并能初步应用公式求周长、面积。

  3、使学生能正确进行乘号的简写,略写,知道一个数的平方的含义及读写法。

  4、在学习中感受到用字母表示数的优越性,激发对数学学习的兴趣。

  教学重点:

  理解用字母表示数的.意义和作用

  教学难点:

  能正确进行乘号的简写,略写。

  教学准备:

  投影仪

  教学过程:

  一、初步感知用字母表示数的意义

  教学例1。

  1、投影出示例1(1):

  引导学生仔细观察两行图中,数的排列规律。

  问:每行图中的数是按什么规律排列的?(指名口答)

  2、学生自己看书解答例1的(2)、(3)小题

  提问请学生思考回答:这几小题中,要求的未知数表示的方法都有一个什么共同的特点?(都是用一些符号或字母来表示的)

  师:在生活中、在数学中,我们经常用字母来表示数。今天这节课我们一起来学习用字母表示数。

  问:你还见过那些用符号或字母表示数的例子?

  如:扑克牌,行程A、B两地,C大调…….

  二、新授:

  1、学习用字母表示运算定律和性质的意义和方法。

  教学例2:

  (1)学生用文字叙述自己印象最深的一个运算定律。

  (2)如果用字母a、b或c表示几个数,请你用字母表示这个运算定律。

  (3)当用字母表示数的时候,你有什么感觉?

  看书45页“用字母表示…….”这一段。

  (4)你还能用字母表示其它的运算定律和性质吗?

  请学生在草稿本上能写几个写几个,体会用字母表示数的优越性。根据学生写的情况师逐一板书。(学生在表示时,一定要清楚表示的是哪一个运算定律)

  加法交换律:a+b=b+a加法结合律:(a+b)+c=a+(b+c)

  乘法交换律:a×b=b×a乘法结合律:(a×b)×c=a×(b×c)

  乘法分配律:(a+b)×c=a×c+b×c

  减法的性质:a-b-c=a-(b+c)

  除法的性质:a÷b÷c=a÷(b×c)

  2、教学字母与字母书写。

  引导学生看书P45提问:在这些用字母表示的定律、性质中,哪一个运算符号可以省略不写?是怎样表示的?(请一生板演)

  a×b=b×a(a×b)×c=a×(b×c)

  可以写成:ab=ba或ab=ba(ab)c=a(bc)或(ab)c=a(bc)

  (a+b)×c=a×c+b×c

  可以写成:(a+b)c=ac+bc或(a+b)c=ac+bc

  其它运算符号能省略吗?数字与数字之间的乘号能省略吗?为什么?(小组同学之间互相说说)师强调:只有字母与字母、数字与字母之间的乘号才可以省略不写。

  3、教学用字母表示计算公式的意义和方法。

  教学例3(1):

  师:字母不但可以表示运算定律还可以表示公式、及数量关系。

  用S表示面积,C表示周长,a表示边长你能写出正方形的面积和周长公式吗?

  学生先自己试写,然后小组交流,看书讨论。

  问:

  (1)两个相同字母之间的乘号不但可以省略,还可怎样写?怎样读?表示的含义是什么?

  (2)字母和数字之间的乘号省略后,谁写在前面?

  a2表示什么?2a表示什么?

  师强调:a表示两个a相乘,读作a的平方。

  口答结果:3的平方5的平方6的平方

  省略数字和字母之间的乘号后,数字一定要写在字母的前面。

  4、练习:省略乘号写出下面各式。

  x×xm×m0.1×0.1a×63×nχ×8a×c

  教学例3(2):

  学生自学并完成相关练习。两生板演。师强调书写格式。

  三、巩固练习:

  1、完成做一做1、2题。

  要求:第1题在书上完成。第2题先写出字母公式,再应用公式计算。

  2、练习十:第1-3题先独立解答后,再集体评议。

《简易方程》教学设计12

  【教学内容】

  教材第79页例5、“做一做”和练习十七第11~15题。

  【教学目标】

  1.使学生掌握利用线段图来分析题中的数量关系,列方程解决实际问题。

  2.学会设计一个未知数,列方程解答含有两个未知数的实际问题。

  3.培养学生学会比较、分析、并能应用已学知识解决实际问题的能力。

  【重点难点】

  1.根据数量关系正确地列出方程并解答。

  2.利用线段图来分析题中的数量关系。

  【教学准备】

  多媒体课件。

  【复习导入】

  1.果园里有桃树45棵,杏树的棵数是桃树的3倍,两种树一共有多少棵?

  学生先讨论后尝试找出题中的数量关系,列出等量关系式,学生独立完成后相互交流。

  2.解方程。

  2(x+5.7x)=24 2x+2.5x=15

  两名学生板演,并交流解答过程。

  3.提问:路程、时间与速度之间有怎样的关系?

  学生讨论、回答。

  4.导入新课:这节课我们继续来学习用方程解决实际问题。(出示课题并板书。)

  【新课讲授】

  教学例5。

  1.出示例5情景图。小林和小云家相距4.5千米,小林每分钟骑250米,小云每分钟骑200米,周日早晨9:00他们相向而行,他们什么时候能相遇?

  2.学生读题,找出有用的信息。

  3.阅读与理解:找等量关系,列方程。

  师:请同学们先思考下面的问题:

  (1)题中有几个未知量?

  (2)设什么为x比较合适,为什么?

  (3)问题中包含有怎样的等量关系?怎样用线段图来表示这些等量关系呢?

  (4)应该怎样列方程?

  汇报交流,总结:

  (1)题中有两个未知量,小林行驶的路程和小云行驶的路程。

  (2)根据两人相遇的`时间相同,设他们相遇的时间为x分钟,那么小林行驶的路程是250x、小云行驶的路程200x。

  (3)根据小林行驶的路程+小云行驶的路程=总路程

  用线段图表示为:(出示线段图)

  先由学生讲述怎样根据题意画线段图,然后教师讲解。

  (4)列方程:250x+200x=4500

  讲解:用方程解决问题,一定要先分析题意,找出等量关系再列方程求解。一般的情况下,我们用画线段图的方法来分析理解题意。

  4.解方程。

  师:你会解这个方程吗?

  学生独立完成后交流。

  课件出示:

  解:设两人相遇的时间为x分钟。

  小林行驶的路程+小云行驶的路程=总路程

  4.5km=4500m

  250x+200x=4500

  450x=4500依据是什么?

  450x÷450=4500÷450

  x=10

  提问:还有没有其他的做法呢?

  学生小组讨论后尝试其他解法,并汇报交流。

  5.检验。

  师:我们做得对吗?如何检验呢?

  学生讨论、汇报交流。

  教师强调学生牢记检验和答句。

  6.回顾与反思。

  师:如何用线段图来分析题意,找出数量关系呢?

  学生讨论、小组代表回答。

  引导学生小结:画线段图的步骤:弄清题意,找出已知与未知,写出等量关系,确定线段所表示的意义,列方程解答。

  【课堂作业】

  完成课本第82页练习十七第11题。

  让学生先说出题目的等量关系,用线段图来进行分析,再列方程解答。

  分析:数量关系式是:甲车行驶路程+乙车行驶路程=总路程

  答案:解:设两车经过x小时相遇。

  甲车行驶路程+乙车行驶路程=总路程

  110x+80x=570

  190x=570

  x=3

  检验:将x=3代入方程,方程左边=110×3+80×3=330+240=570=方程右边

  所以x=3是原方程的解。

  答:两车经过3小时相遇。

  【课堂小结】

  提问:同学们,通过这节课的学习,你知道怎样用画线段图的方法来解决实际问题了吗?

  小结:用方程解决实际问题的步骤:

  画线段图的步骤:弄清题意,找出已知与未知,写出等量关系,确定线段所表示的意义,列方程解答。

  强调注意单位要统一,解完方程后要检验,并写出答句。

  【课后作业】

  完成课本第82页练习十七的12~15题。

《简易方程》教学设计13

  教学内容:教材第65页例1。练习十二的第1——3题。

  教学目标:

  1.学生能根据等式的基本性质解形如ax±b=c的方程,初步学会列方程解决一些简单的实际问题。

  2.培养学生抽象概括的能力,发展学生思维灵活性,进一步提高学生的分析能力。

  3.学生感受数学与现实生活的联系,培养学生的数学运用意识与规范书写和自觉检验的习惯。

  教学重点:掌握解形如ax±b=c方程的解法。

  教学难点:正确找出数量间的相等关系,列出方程。

  教学过程:

  一、复习铺垫:

  1.解方程。

  x-2.5=10 0. 4x=12 3.2+x=40

  2.根据下列句子说出其数量间相等的关系。

  1)女生比男生人数的3倍少10人。

  2)这个月比上个月水电费的2倍多200元。

  二、情景导入:

  同学们见过足球吧?(出示1个足球)

  (出示例1)一起观察挂图,问:图中的哪些信息是解决“共有多少块黑色皮?”这个问题所需要的?

  三、探究新知:

  1.师:要想知道黑色皮有多少块,就必须了解黑色皮的块数和白色皮的块数有什么等量关系?

  老师可以用线路图表示帮助学生分析题中的等量关系。

  2.请学生依据等量关系式列出方程;还有另外的学生找到另外的等量关系式,列方程。

  3.师:大家依据不同的等量关系列出较复杂的方程,怎样解答呢?今天我们就来学习“稍复杂的`方程”。(板书课题)

  4.探究求解过程。

  1)生:我们可以用“黑色皮的块数×2-4=白色皮的块数 ”这个等量关系式列方程,可以怎么解呢?

  2)强调:把2x看作一个整体,先求出2x等于多少,再求出x等于多少。

  3)最后求出 x=12,还要检验12是不是这个方程的解。(学生在黑板上展示解方程的步骤)

  4)2x-20=4 这样的方程能转化成我们原来学过的简单的方程再解答吗?(在黑板上展示方程的解法步骤)

  5)师:同学们真了不起,这几个同学解答较复杂的方程都是先转化成简单的方程,然后用学过的知识去解决。请同学们不要忘记,最后要检验结果是否正确。

  5.大家在用方程解决问题的时候,有什么共同特点吗?步骤是什么呢?

  (生答完特点后,师生共同总结列方程解决问题的步骤:

  ① 弄清题意,找出未知数用x表示;

  ② 分析、找出数量间的相等关系,列方程;

  ③ 解方程;

  ④ 检验并写答语。)

  四、巩固拓展:

  1.p66 第1题 解下列方程 3x+6=18 2x-7.5=8.5 16+8x=40 4x-3x9=29

  2.p66第2题

  五、全课总结:

  本节课你有什么收获?

  作业:p66 3

  板书设计: 稍复杂的方程

  例1 解:设共有x块黑色皮。

  黑色皮块数x2-4=白色皮块数

  2x-4=20

  2x-4+4=20+4

  2x=24

  2x÷2=24÷2

  x=12

  答:共有12块黑色皮。

  课后小记:这节课由于有了前面的几节课对等量关系的训练,在根据老师出示的线段图,学生很快就找到了等量关系,列出了方程,方程的求解过程就是本节课的重点内容,一定要反复的请学生说,达到都会的结果。

《简易方程》教学设计14

  教学目标:

  1、认识等式,以具体的实例引导学生通过自主的探索活动,初步理解等式的特征。

  2、通过观察比较,使学生认识含有未知数的等式是方程,感受等式与方程的练习与区别,体会方程是特殊的等式。

  学重点理解等式的性质,理解方程的意义。

  教学难点利用等式性质和方程的意义列出方程。

  教学准备课件

  教学过程:

  一、预习测试

  直接写出得数:

  5x+4x=8y-y=7x+7x+6x=7a×a=15x+6x=5b+4b-9b=

  二、自主学习

  1、交流预习作业,指名学生口答

  2、出示天平

  知道这是什么吗?你长大它是按照什么原理制造的吗?

  说说你的想法。

  如果天平左边的物体重50克,右边的放多少克才能保持天平的平衡呢?

  3、教学例1,出示例1图。

  你会用等式表示天平两边物体的质量关系吗?

  50+50=100(板书)

  说说你是怎样想的?

  (1)指出等式的左边,等式的右边等概念。

  (2)等式有什么特征?(等式的左边和右边结果相等:等式用等号连接)

  能说说什么样的式子叫做等式吗?(左右两边相等的式子叫做等式)

  3、教学例2,出示例2图

  天平往哪一边下垂说明什么?(哪一边物体的质量多)

  你能用式子表示天平两边物体的质量关系吗?

  学生独立完成填写,集体汇报。

  板书:

  x+50>100X+50<200x+50=150x+x=200

  如果让你把这四个式子分类,应分为几类?为什么?

  指出:左右两边相等的式子叫做等式,而这些等式与前面所看到的等式又有什么不同?(等式中含有未知数)

  知道像x+50=100,x+x=100这样的.等式叫什么吗?(方程)

  说说什么是方程?你觉得这句话里哪两个词比较重要?(含有未知数、等式)

  4、讨论:等式与方程有什么关系?

  小组讨论。

  指出:方程一定是等式,但等式不一定是方程。

  方程是特殊的等式。他们的关系可以用集合圈表示。

  5、教学试一试

  独立完成,完成后汇报方法。

  让学生说一说,每题中的方程哪个更简洁一些?

  指出:像500÷2=x。20-12=x虽然也是方程,但在列方程时应尽量避免这样x单独在等号左边或右边的方法。

  三、多层练习

  1、完成“练一练”第1题

  独立完成判断后说说想法

  2、完成“练一练”第2题,第3题

  交流所列方程,说说你为什么这样咧?你是怎么想的?

  3、完成练习一第1题。

  能说说每个线段表示的意思吗?方程怎样列呢?

  小组中交流列式。

  4、完成练习一第2题

  理解题意,说说数量关系式怎样的?

  列出方程并交流

  5、完成练习一第3题

  四、课堂总结

  通过学习,你有哪些收获?

  五、作业

  1、完成《补充习题》

  42、每日一题

  写出一些方程,并在小组里面交流

  六、板书设计

  方程

  50+50=100x+50>100x+50=150

  X+50<200x+x=200

  七、预习布置:

  八、教学反思

  第一单元第二课时等式的性质

  教学目标:

  1、使学生在具体的情景中的初步理解“等式的两边同时加上或减去同一个数,所得的结果仍然是等式”

  。会用等式的性质解简单的方程。

  2、使学生在观察、分析和交流过程中,进一步积累数学活动的经验,感受方程的思想方法,发展初步的抽象思维能力。

  教学重点:会用等式的性质解方程

  教学难点:对等式第1个性质的探索过程

  教学准备:课件

  教学过程:

  一、预习测试

  下面哪些是等式,哪些是方程?

  6+x=1436-7=2960+23≠708+x50÷2=25x+4<14y-28=355y=40

  二、自主学习

  1、交流预习作业

  (1)指名学生回答预习作业

  (2)什么是等式?什么是方程?等式和方程有什么联系?

  2、教学例3

  (1)我们已经认识了等式和方程。今天这节课,将继续学习与等式、方程有关的知识。

  (2)取出天平,情景引入(在天平两边各放入一个20克的砝码)天平的两边一样重吗?天平会平衡吗?

  你能根据天平两边的砝码质量写一个等式吗?(20=20)

  现在的天平是平衡的,如果将天平的左边加上一个10克的砝码,这时天平会怎样?(失去平衡)

  要使天平恢复平衡可以怎么办?(在另一边加上一个10克的砝码,或拿走这个10克的砝码)添上一个10克的砝码。

  现在天平恢复平衡了,你能在上面这个等式的基础上,再写一个等式表示天平两边物质质量的关系吗?

《简易方程》教学设计15

  【教学内容】

  教材第83页的内容和练习十八的第1~9题。

  【教学目标】

  1.通过学习使学生更加系统地掌握本单元所学的知识,进一步理解和掌握用字母表示数的含义、方法、等式的基本性质,提高解简易方程的能力。

  2.通过对用列方程方法解决问题的整理和复习,进一步掌握列方程解决问题的思考方法和特点,体会列方程解决问题的优越性。

  3.提高学生灵活选用合适的方法解答应用题的能力。

  4.使学生养成自觉整理知识的良好习惯。

  【重点难点】

  1.使学生更加系统完整地掌握本单元知识,进一步提高总结、归纳知识的能力。

  2.通过整理和复习,进一步掌握用方程解决问题的思考方法和特点,提高灵活应用知识的能力。

  【知识梳理】

  1.揭示课题:这节课我们一起来对本单元所学习的.知识进行整理和复习。(出示课题)

  2.整理知识点。

  师:请同学们认真回顾,本单元我们学习了哪些知识?这些知识之间有什么联系?

  小组合作归纳这部分内容后,汇报。

  根据学生的汇报,教师帮助学生形成知识网络,板书:

  【复习提升】

  1.复习用字母表示数。

  提问:

  (1)回忆一下,用字母可以表示什么?(用字母可以表示数、公式、运算定律、数量关系等等。)

  (2)用字母表示数时有哪些简写的规定?

  (3)用含有字母的计算公式求值时,应注意什么?

  跟踪训练:

  (1)用字母表示下面的运算定律和计算公式。

  加法结合律:

  加法交换律:

  乘法结合律:

  乘法交换律:

  长方形的周长计算公式:

  长方形的面积计算公式:

  正方形的周长计算公式:

  正方形的面积计算公式:

  (2)城区修一条长a千米的公路,已经修了15天,每天修b千米,剩下的要c天完成。

  ①15b表示()

  ②a-15b表示()

  ③15+c表示()

  ④(a-15b)÷c表示()

  (3)算一算。

  当a=3,b=5.8,x=1.5时,求下列各式的值。

  ①40x+a②ab÷0.48

  答案:(2)①15天修的长度②剩下没修的长度③修完公路所用的总天数④剩下的每天要修的长度

  (3)①40x+a=40×1.5+3=63②ab÷0.48=3×5.8÷0.48=36.25

  2.复习解方程。

  (1)方程的意义。

  师:这个单元我们还学习了方程的意义,什么叫方程?

  判断:下面的式子是不是方程?

  ①x÷b=3②2x-7>9③0.2x+4=6④3b+2b=2.5⑤12x-9x=8.7⑥2.7+4.8=x÷2

  小结:含有未知数的等式叫方程。

  师:方程和等式有什么关系?你能用图示表示出来吗?

  板书:

  小结:方程一定是等式,等式不一定是方程。

  (2)等式的性质。

  师:等式有什么性质?

  学生回答。

  (3)解方程。

  0.2x+4=6 12x-9x=8.7 3(x+2.1)=10.5

  ①想一想解方程的原理是什么?等式的性质是什么?

  ②举例:怎样验证0.2x+4=6,x=10是方程的解?

  ③什么叫解方程?什么是方程的解?

  跟踪训练:

  (1)完成课本第83页的第1题。

  (2)完成课本练习十八的第1题。

  答案:(1)x=2.4 x=9.7 x=3.2

  x=5 x=1.4 x=2.9

  (2)X X√√

  3.复习实际问题与方程。

  师:请同学们回顾一下,列方程解决问题这部分,我们都学了哪些知识?

  学生汇报:

  (1)列方程解决问题的一般步骤是:

  ①理解题意,找出未知数,用x表示;

  ②分析,找出题中数量间相等的关系,列方程;

  ③解方程;

  ④检验并写出答案。

  (2)列方程解应用题的关键是找出题中相等的数量关系。

  (3)算术方法和方程方法有何区别?

  跟踪训练:

  1.找相等关系的练习。

  A:长方形的周长为30m,长10m,宽多少米?

  小结:策略一:我们可以利用计算公式找相等关系。

  B:明明运动后的心跳比运动前快了55下。

  师:能找到相等关系吗?还能找到不一样的相等关系吗?

  小结:策略二:读懂关键句子,分析相等关系。

  2.分析相等关系的练习。

  妈妈去超市买了2箱方便面付给营业员100元,找回28元,设每箱方便面x元,下面()是错误的。

  A.100-2x=28 B.2x+28=100

  C.2x-100=28 D.2x=100-28

  3.完成课本第83页的第2题。

  4.完成课本练习十八的第3、6题。

  答案:1.A.(长+宽)×2=周长

  B.运动后的心跳-运动前的心跳=55

  运动前的心跳+55=运动后的心跳

  运动后的心跳-55=运动前的心跳

  2.C

  3.(1)解:设两个月前他的体重是x千克。

  x-3=93 x=96

  答:两个月前他的体重是96千克。

  (2)解:设这条街一共有x盏路灯。

  5x=140 x=28

  答:这条街一共有28盏路灯。

  (3)解:设梅花鹿的高度为x米,则长颈鹿的高度为(x+3.65)米。

  3.5x=x+3.65 x=1.46

  1.46+3.65=5.11(m)

  4.第3题:75次

  第6题:长:0.6m,宽:0.3m,面积:0.18m

  【课堂小结】

  提问:学习了这节课,你们有什么收获?还有什么疑问?

  小结:学习了这节课,我更加系统完整地掌握了本章知识,进一步掌握了用方程解决问题的思考方法和特点。

  【课后作业】

  1.课本练习十八的第1~2,4~5,7~9题。

【《简易方程》教学设计】相关文章:

《简易方程》教学反思03-11

方程教学设计01-02

《方程的意义》教学设计05-15

《解简易方程》教学反思10篇09-08

五年级简易方程教学反思06-16

《方程的意义》教学反思03-10

《解方程》的教学反思09-17

《认识方程》教学反思09-27

方程的意义教学反思04-17

一元二次方程教学设计07-31