六年级《倒数的认识》教学设计

时间:2024-05-30 22:49:35 教学设计 我要投稿

六年级《倒数的认识》教学设计

  作为一位无私奉献的人民教师,时常要开展教学设计的准备工作,借助教学设计可以提高教学效率和教学质量。教学设计要怎么写呢?以下是小编为大家收集的六年级《倒数的认识》教学设计,欢迎大家借鉴与参考,希望对大家有所帮助。

六年级《倒数的认识》教学设计

六年级《倒数的认识》教学设计1

  【教学内容】

  教材P28页中的例1、“做一做”及练习六中的部分练习题。

  【教学目标】

  1、知识与技能:通过一些实例的探究,让学生理解和掌握倒数的意义。在合作探究中掌握求倒数的方法,会求一个数的倒数。

  2、过程与方法:引导学生通过体验、研究、类推等实践活动,理解倒数的意义,让学生经历提出问题、自探问题、应用知识的过程,自主总结出求倒数的方法。

  3、情感、态度与价值观:通过学生亲身参与探究活动,体验数学学习的乐趣,激发他们积极的学习情感,养成合作探究问题的习惯。

  【教学重点】

  理解倒数的意义,学会求倒数的方法。

  【教学难点】

  小数与整数求倒数的方法以及0、1的倒数。

  【教学方法】

  创设情境、启发诱导、合作交流、自学与讲授相结合等。

  【教具准备】

  课件

  【教学过程】

  一、激趣引入

  师:(板书“呆”)呆是一个上下结构的字,“呆”字如果上下颠倒就成了“杏”,语文中的文字有许多这样的构字规律,比如(杏——呆;吞——吴;音——昱;士——干……)那么在数学中的数也有这种规律吗?

  二、新知探究

  (一)探究讨论,理解倒数的`意义。

  1、课件出示算式。

  先计算,再观察,看看有什么规律。

  3/8×8/37/15×15/75×1/51/12×12

  小组汇报交流

  2、出示倒数的意义:乘积是1的两个数互为倒数。

  3、你是怎样理解“互为倒数”的呢?能举例吗?

  4、倒数的表达方式。

  (二)深化理解。

  1、乘积是1的两个数存在着怎样的倒数关系呢?

  2、互为倒数的两个数有什么特点?

  3、想一想:1的倒数是多少?0有倒数吗?为什么?怎么理解?

  4、辨析:下面的说法对吗?为什么?

  A:2/3是倒数。()

  B:得数为1的两个数互为倒数。()

  C、7/15和15/7乘积是1,所以7/15和15/7互为倒数。()

  D、0的倒数还是0。()

  (三)运用概念。

  1、讨论求一个分数的倒数的方法。

  出示例1:写出其中3/5和7/2两个分数的倒数。

  (1)学生试做并讨论。

  (2)生汇报:

  (3)师生共同小结:求一个分数的倒数,只要把这个分数的分子、分母调换位置。

  2、怎样求整数(0除外)的倒数?请求出6的倒数是几?(出示课件)

  3、1的倒数是几?0的倒数是几?

  (1)学生试做并讨论。

  (2)生汇报:

  (3)师生共同小结:1的倒数是1,0没有倒数。

  4、小结。

  求一个数的倒数(0除外),只要把这个数的分子、分母调换位置。

  三、巩固练习

  1、写出下面各数的倒数。

  4/1116/97/84/1535

  2、判断。

  (1)真分数的倒数都是假分数。()

  (2)假分数的倒数都小于1。()

  (3)0的倒数是0,1的倒数是1。()

  四、课堂小结

  今天我们学习了有关倒数的哪些新知识?

六年级《倒数的认识》教学设计2

  教学目标:

  1、通过观察、比较、概括、抽象,从本质上理解倒数的意义,并能正确地求一个数的倒数。

  2、培养学生的数学思维。

  教学重点:理解倒数的意义,求一个数的倒数。

  教学难点:从本质上理解倒数的意义。

  教学过程:

  一、呈现数据,先计算,再观察发现。

  1、出示:3/8×8/3 7/15×15/7 5×1/5 0。25×4 2、

  计算后,这些数据你发现有什么规律?(学生先独立思考,然后组内交流)

  二、交流思辨,抽象概念。

  1、汇报。乘积都是1。

  2、你能根据上面的观察写出乘积是1的另一个数吗?

  3/4×( )=1 ( )×9/7=1

  说说你是怎样写得,有什么窍门?

  你还能写出像这样乘积是1的`两个数吗?不过要写得与众不同!(鼓励学生写出整数、小数) 你是怎样想的?

  如0。5、1。7 3、抽象概念,乘积是1的两个数,互为倒数。可以说谁和谁是互为倒数,也可以说谁是谁的倒数。

  4、让学生说说上面的数(用两种说法)。

  5、是互为倒数的它们的积是1,这两个数有特点吗?仔细观察这些数。

  学生讨论:分数的分子分母调了一下位置;

  师:那么5×1/5 0。2×5乘积也是1哟!怎么?把整数和小数也化成分数。

  6、沟通:分子分母倒一下跟乘积是1有联系吗?

  7、现在你对倒数有了怎样的认识?

  三、求一个数的倒数。

  1、找一个数的倒数。

  5/11的倒数是( ),( )的倒数是4/7,( )和15是互为倒数。

  你是怎样找一个数的倒数的?说说你的方法。(从倒数的意义和现象)

  2、会找了吗?你能找到下列数的倒数吗?

  3/5 4/9 6 7/2 1 1.25 1。2 0

  学生独立完成,然后交流。

六年级《倒数的认识》教学设计3

  教材分析:

  教材首先让学生观察乘积是1的算式,引出倒数的意义;根据倒数的意义,求一个数的倒数是应该用1除以这个数,但学生尚未学习分数除法,因此,教材接着运用不完全归纳法让学生寻找求一个数的倒数的方法。

  教学目标:

  (1)知识目标:使学生理解倒数的意义,掌握求倒数的方法,并能正确熟练的求出倒数。

  (2)能力目标:采用自学与小组讨论的方法进行教学,进一步培养学生的自主学习的能力,提高学生观察、比较、抽象、归纳以及合作学习的能力。

  (3)情感目标:提高学生学习数学的兴趣,发展学生质疑的习惯。

  教学重点:知道倒数的意义和会求一个数的倒数

  教学难点:1、0的倒数的求法。

  教具准备:课件

  教学过程:

  一、课前谈话:

  师:今天老师很高兴和大家上课,所以上课前老师想和大家互相成为好朋友。

  生:好!

  师:那你想怎样表述我们的关系?

  生: 我们双方面互为朋友,也可以说成“老师是你的朋友”,“你是老师的朋友”。 这样学生对马上接触到的“互为倒数”就比较容易理解了。

  二、揭示倒数的意义

  师:前面我们学习了分数乘法,请同学们计算几道题。 师:观察它们有什么共同的特点? 生:乘积都是1!??

  师:对,今天我们要研究的就是乘积是1的两个数。你们还能写出乘积是1的两个数吗?

  生:(齐)能!

  师:那好,我们就进行一个小小的比赛。请大家准备好课堂练习本,我给大家一定的时间,请你写出乘积是1的任意两个数,看谁写得多,而且能写出不同的类型。

  准备好了吗?开始??

  师:时间到,停!谁愿意把你写的念出来,和大家共同分享?

  (生读,师有选择的板书在黑板上。 )

  师:这么短的时间内就能写出这么多乘积是1的两个数,不错。

  师:如果给你们充足的时间,你们还能写多少个这样的乘法算式?

  生:无数个

  出示例7

  师:那请你们来帮帮忙,找出乘积是1的两个数。

  (学生个别回答)

  师:你们找的这些与之前写的所有算式都有怎样的共同点?

  生:乘积都是1。

  师:你知道吗?揭示意义】 教师板书:乘积是1的两个数叫做互为倒数。生齐读。

  师:黑板上所写的两个数的积都是1 ,所以他们互为倒数。比如3/8和8/3的乘积是1 ,我们就说3/8和8/3互为倒数。(师板书3/8和8/3互为倒数) 【示范说】

  师:3/8和8/3互为倒数!我们还可以怎么说呢。

  生:3/8的倒数是8/3;8/3的倒数是3/8。

  师:为什么乘积是1的两个数不直接说是倒数,而要说“互为”倒数呢?“互为”是什么意思呢?你是怎样理解这两个字?

  生1:“互为”是指两个数的关系。

  生2:“互为”说明这两个数的关系是相互依存的。

  师:同学们说得很好。倒数是表示两个数之间的关系,它们是相互依存的,所以必须说清一个数是另一个数的倒数,而不能孤立地说某一个数是倒数。以前我们学过这种两数间相互依存关系的知识吗?

  师:2/5和5/2的积是1,我们就说??(生齐说)

  师:7/10和10/7的乘积是1,这两个数的关系可以怎么说?请您告诉你的同桌。

  (学生活动)

  (小结:刚才我们就认识了倒数的意义,知道乘积是1的两个数互为倒数,而且倒数不能单独存在,是相互依存的。)

  探索求一个倒数的方法

  师:非常好!我们知道了倒数的意义,那么互为倒数的两个数有什么特点呢?我们一起来观察一下刚才的这些例子。

  生1:互为倒数的两个数分子和分母调换了位置。

  师:同意吗?

  生:同意。

  师:根据这一特点你能写出一个数的倒数吗?

  生:能

  师:试一试!

  师在黑板上出示3/5 7/2 ,写出它们的倒数。

  师:那5(0.1)的倒数是什么?它可是没有分子和分母呀? 还有1 又1/8呢?

  生:把5看成是分母是1的分数,再把分子分母调换位置。

  求小数的倒数的方法:小数 求带分数的倒数的方法:带分数

  三、 分数倒数。 倒数。 假分数

  师:那1 的倒数是几呢?(学生很快就说出来了,并说明了理由)

  0的倒数呢?

  师:为什么?

  生1:因为0和任何数相乘都得0,不可能得1。

  师:刚才一个同学提出分子是0的`分数,实际上就等于0,0可以看成是0/2、0/3、??把这此分数的分子分母调换位置后。。。。。。(生齐:分母就为0了,而分母不可以为0。) 师:我们求了这么多数的倒数,谁来总结一下求一个数的倒数的方法。

  生1:求一个数的倒数,只要把分子分母调换位置。

  生2:如果是求一个整数的倒数,可以把这个整数看成是分母是1的分数,然后再调换分子分母的位置。

  生3:1 的倒数是1,0没有倒数。

  (生齐读求一个数倒数的方法。 )

  四、巩固练习

  1、打开书,阅读课本P34,把你认为重要的划起来。

  2、完成练一练。

  (1)学生在书上完成,教师巡视,请同学板演。注意学生的书写格式是否正确。

  (2)发现一学生书写有误,与该生交流。

  (3)用展台展示该生的错误。

  师:这样写可以吗?(4/11=11/4)

  生:不可以!

  师:为什么?

  生1:比如4/11的倒数是11/4,4/11是真分数,11/4另一个是假分数,它们是不可能相等的。

  (4)师:对,互为倒数的两个数是不会相等的(1除外)。我们在书写时要写清谁是谁的倒数,或谁的倒数是谁,如老师黑板上写的一样。

  3、小游戏:同桌互相出一题,对方说出答案。

  4、先说说下面每组数的倒数,再看看你能发现什么?

  (1)3/4的倒数是( ) (2)9/7的倒数是( )

  2/5的倒数是( )10/3的倒数是( )

  4/7的倒数是( ) 6/5的倒数是( )

  (3)1/3的倒数是( ) (4)3的倒数是( )

  1/10的倒数是( )9的倒数是( )

  1/13的倒数是( )14的倒数是( )

  由学生说出各数的倒数。然后

  师:请你仔细观察,看能从中发现什么,发现得越多越好。

  师:小组间可以先互相说一说。

  汇报:

  生1:我从第一组中发现真分数的倒数都是假分数。

  生2:我从第二组中发现假分数的倒数是真分数或者假分数。

  生3:真分数的倒数都小于1,假分数的倒数大于1。 假分数的倒数也可能等于1。 生4:我发现分子是1的分数。

  4、填空:

  7×( )=15/2×( )=( )×3又2/3=0.17×( )=1

  五、课堂小结

  1、小结:今天我们学习了什么???

  2、学了倒数有什么用呢?

  大家课后可去思考一下。

  板书设计

  倒数的认识

  乘积是1的两个数互为倒数 1的倒数是1。0没有倒数。

  0.1的倒数10 5的倒数是5 1又1/8的倒数是8/9 。

  (0.1=1/10) (5=5/1) (1又1/8=9/8)

  求小数的倒数的方法: 求带分数的倒数的方法:带分数

  分数假分数 倒数。 倒数。

六年级《倒数的认识》教学设计4

  教材分析

  《倒数的认识》是人教版小学数学六年级上册第二单元中的内容,是学生学习了分数乘法的意义及应用题之后的内容,为学习分数除法的意义及计算法则打基础,分数除法经常要转化成分数乘法进行计算,转化需要倒数的知识。因此,本单元在分数乘法的教学基本完成以后,编排了有关倒数知识的一节教材和一个练习,为下一单元的教学提前作准备。

  学情分析

  学生初看到“倒数”这一概念时,从字面上看也许对它有了一定的了解,所以通过学生自学,自主探索倒数有什么意义,如何求一个数(0除外)倒数的方法,使学生真正理解倒数的含义,在此基础上培养学生观察能力、比较能力与分析概括的能力。

  教学目标

  1、知道倒数的意义,会求一个数的倒数。

  2、经历倒数的意义这一概念的形式过程。

  3、培养学生观察、归纳、推理和概括的能力。

  4、利用教师的情感特征,激发学生的学习兴趣,让学生体会成功的快乐。

  教学重点和难点

  理解倒数的意义,会求一个数的倒数。

  教学过程

  略

  教学反思

  “倒数的认识”是在学生掌握了整数乘法、分数加法和减法计算、分数乘法的意义和计算法则、分数乘法应用题等知识的基础上进行教学的。理解倒数的意义和会求一个数的倒数是学生学习分数除法的前提。学生必须学好这部分知识,才能更好地掌握后面的分数除法的计算和应用题。这节课上,我采用了探究式的教学方法,正确处理了“教教材”和“用教材”的关系。1.在本课的引入中,我没有采用多种铺垫,而是直接通过让学生计算教材中的四个乘法算式,观察积的特点与算式中两个因数的特点,直接对倒数形成了初步的认识,更明白了只要调换分子与分母的位置就会得到一个新的分数。为了使学生深入了解倒数的意义,我引导学生举了大量分数的例子,并通过观察、计算等方法使学生明确“互为倒数的两个数的乘积是1”、“倒数的两个数只是把分子和分母的位置进行调换”、更让我高兴的是学生能注意到“倒数是相互依存的”。抓住学生的这一发现,我引导他们很快就总结出了倒数的`概念——乘积是1的两个数叫做互为倒数。2.在让学生通过研究求各种数的倒数的方法的环节上,避免了学生在学习中只会求分数的倒数的知识的单一,延伸的所学的内容。在最后,面对特殊的0和1这两个数时,学生们出现了小小的“争执”。有人认为:“0和1有倒数。”有人认为:“0和1没有倒数。”对于学生的“争执”我没有直接介入,而是引导他们互相说说自己的理由,在他们的交流中,学生们达成了一致的认识:0没有倒数,1的倒数是它本身。并且在说明理由时,学生还认为“0不能做分母,所以0没有倒数”这个理由,拓展了我所提供给学生的知识内容。如果让我重新上这节课我会设计出更多的形式多样的练习让学生在练习中得到更大的提高。

六年级《倒数的认识》教学设计5

  教学重点:认识倒数并掌握求倒数的方法

  教学难点:小数与整数求倒数的方法

  教学过程:

  一、基本训练

  口算:

  上面各式有什么特点?

  还有哪两个数的乘积是1?请你任意举出乘积是1的两个数。

  (板书:乘积是1,两个数)

  二、引入新课

  刚才我们所举出的乘积是1的两个数之间有一种特殊的关系。

  (板书:倒数)

  三、新课教学

  1、乘积是1的两个数存在着怎样的倒数关系呢?

  请看:,那么我们就说是的倒数,反过来(引导学生说)

  是的.倒数,也就是说和互为倒数。

  和存在怎样的倒数关系呢?2和呢?

  2.深化理解

  提问:①什么是互为倒数?

  怎样理解这句话?(举例说明)

  (的倒数是,的倒数是,......不能说是倒数,要说它是谁的倒数。)

  ②0有倒数吗?为什么?1有倒数吗?什么?(0虽然可以看作几分之0,如,,......但是把分子、分母调换位置,分母为0,不成立,所以0没有倒数,另外0和任何数相乘却为0。1可以写作,1与相乘还是1,符合倒数的意义,所以1的倒数是1)。

  3.求一个数的倒数

  教师设疑:怎样的两个数互为倒数呢?请同学们试着写一写。

  ①出示例题

  例:写出、的倒数

  学生试做讨论后,教师将过程板书如下:

  所以的倒数是,的倒数是。

  (能不能写成,为什么?)

  总结:求一个数(0除外)的倒数,只要把这个数的分子、分母调换位置。

  ②深化

  你会求小数的倒数吗?(学生试做)

六年级《倒数的认识》教学设计6

  学习内容:

  人教版义务教育教科书数学六年级上册P28—29

  学习目标:

  (1)理解倒数的意义及倒数的特点,掌握求倒数的方法,并能正确熟练的求出倒数。

  (2)采用自主探究与合作交流的方法,进一步培养学生的自主学习能力,提高学生观察、比较、归纳、概括以及合作学习的能力。

  (3)通过亲身参与探究活动,体验数学学习的乐趣,激发积极的学习情感,培养学生学会与人合作,愿与人交流的习惯。

  学习重点倒数的意义、特点和求倒数的`方法。

  学习难点:1和0的倒数的求法。

  学习过程:

  一、创设情境,激趣导学。

  1、出示算式,找特征。

  先计算,再观察,看看有什么规律。

  × = 1 ×=1 5×= 1 ×12= 1

  问:“你发现了什么?”

  2、引出倒数的定义。让学生看书。

  3、揭题:今天我们就来学习“倒数的意义”(板书课题)。

  二、独学质疑,合作探究。

  1、初步理解

  我们知道× = 1,那么我们可以说:“因为× = 1所以和互为倒数”

  这句话还可以怎么说?的倒数是,的倒数是。

  你能照样子,结合黑板上的例题,说说算式中两数之间的关系吗?

  2、判断,加深理解

  (1)判断正误,并说明理由。

  a、和7都是倒数。(关注到了倒数的概念中关键的词语“互为”)

  b、 +=1,所以和互为倒数。(关注了倒数概念中关键的词语“乘积是1。”)

  c、 ××=1,所以、、互为倒数。(关注了倒数中的关键词“两个数”)

  小结:对于概念的学习,应该充分关注概念中的关键词语。

  (2)请任意写出三个数的倒数,要求,写完整:谁的倒数是谁?

  三、点拨互动,应用提升。

  1、出示例2,找一找哪两个数互为倒数?

  2、学生汇报找的结果,并说说怎样找的?

  (1)看两个数的乘积是不是1。

  (2)看两个数的分子与分母是否交换了位置。

  3、根据寻找出的结果,探究倒数的特点。

  4、这两种方法,哪一种比较快?

  5、设问:1和0有没有倒数?如果有,是多少?

  (1)分组讨论。

  (2)学生汇报。

  四、检测诊断,总结评价。

  1、基本练习:完成教科书P28的做一做,然后集体订正。

  2、加深练习:倒数一定比它本身要小吗?探究什么数的倒数比它本身要大,什么数的倒数比它本身要小。

【六年级《倒数的认识》教学设计】相关文章:

倒数的认识教学设计04-03

倒数的认识教学设计07-11

《倒数的认识》教学设计12-08

倒数的认识的教学设计12-08

《倒数的认识》教学设计05-15

数学倒数的认识教学设计02-10

倒数的认识教学设计15篇(精选)08-31

六年级《倒数认识》教学设计05-10

倒数的认识教学设计精品【15篇】08-24

倒数的认识教学反思03-03