分数教学设计
作为一名教师,通常需要用到教学设计来辅助教学,借助教学设计可以更大幅度地提高学生各方面的能力,从而使学生获得良好的发展。那么什么样的教学设计才是好的呢?下面是小编整理的分数教学设计 ,希望对大家有所帮助。
分数教学设计 1
一、今天老师有幸和大家一起学习,你们欢迎我吗?欢迎的话举手表示,感到很高兴,既然欢迎,你在上课时怎样表现?
二、引入
常州,历史悠久,人文荟萃,绿树芳草,将我们的家乡装点得秀丽多姿,近几年市政府投入更多资金,要把常州建设为美丽的园林城市。消息一传出,许多植树公司纷纷表示愿意承担此项工程。
提问:你觉得市政府在选择公司时会考虑哪些因素呢?
学生回答:如实力、服务质量、完成工期、诚信度、公司规模等。
三、自主探究
1、初读信息,形成认知矛盾
经过调查,市政府发现有三家公司在资金、工期、诚信度等方面的条件旗鼓相当,所以派人去他们以前的工程现场进行了实施调查,采集回了以下信息:
(课件呈现)
甲公司负责的1号路段中,现在成活树苗有24棵。
乙公司负责的2号路段中,现在成活树苗有19棵。
丙公司负责的3号路段中,现在成活树苗有47棵。
看着这组信息,你会选择哪个植树公司呢?让学生展开讨论。
引出:只了解成活的`棵树这一个数量还不行,还需要知道树苗的总棵树是多少。(板书:成活棵树 总棵树)
2、查阅资料,同学们需要的数据找到了。
甲公司负责的1号路段中,共种树苗25棵,现在成活树苗有24棵。
乙公司负责的2号路段中,共种树苗20棵,现在成活树苗有19棵。
丙公司负责的3号路段中,共种树苗50棵,现在成活树苗有47棵。
提问:现在,你会建议市政府选择哪个公司呢?(小组讨论,并请一个代言人作好发言准备)交流发布。
板书:成活棵树是总棵数的几分之几?怎样比较可以快一些?(通分)
现在同学们很快可以做出判段选哪个公司比较好。黑板上改一下,成活棵树是总棵数的百分之几?引出:百分数
%→这个符号叫百分号。
甲:24÷25=24/25=96/100=96%
乙:19÷20=19/20=95/100=95%
丙:47÷50=47/50=94/100=94%
我们还可以写成这样:96%让学生上黑板写下面两个,其余同学写在自己的本子上。
提问:谁能用自己的话来说说96%95%94%表示什么意思?
交流信息,进一步体会百分数在生活中的应用。学生小组交流一下收集到的信息。进一步体会百分数的意义。
3、小结归纳
了解这么多的百分数,你能用自己的话说说什么叫做百分数?
①阅读课本:你还有什么疑问吗?
百分数与分数有什么不同?
(形式、意义、作用、书写方法都存在不同的地方)
四、应用提高
1、下面哪几个分数可以写成百分数,哪几个不能?
(1)一堆煤97/100吨,运走它的75/100
(2)23/100米相当于46/100米的50/100
小结:数量不能写成百分数,分率可以写成百分数。
2、(课件呈现)
出示肯得基图片,你爱吃吗?猜一猜我们班爱吃人占全班的百分之几,看一段小资料,说说你的想法。引出洋快餐营业额比中式快餐多了百分之几?
(课件呈现)
2004年雅典奥运会,中国健儿取得了32枚金牌的优异成绩,夺
得令全世界瞩目的成绩。人们纷纷认为2008年北京奥运会将是中国体育健儿再创辉煌的时刻。中国奥委会在北京投入了1800亿进行城市基础设施建设,包括进行快速交通网络、环境整治、生活设施改造与信息化建设。各项投资比例如图:
游戏:石头、剪刀、布让学生收集信息,计算百分数。
五、小结收获,自我反思
这节课快结束了,老师对同学们的表现是100%的满意,老师想了解一下你的学习情绪如何?特别是愉快、紧张和遗憾这三种情绪。你能用百分数来告诉大家这节课的各部分学习情绪所占的比率吗?
愉快()%
紧张()%
遗憾()%
学了今天这节课,你想用百分数干些什么?
分数教学设计 2
教学目标
1.掌握分数四则混合运算的运算顺序,并能正确地计算分数四则混合运算式题。
2.提高学生的自学能力、逻辑推理能力及计算能力。
3.培养学生良好的学习习惯。
教学重点和难点
掌握分数四则混合运算的运算顺序,养成良好的学习习惯,提高做题的正确率。
教学过程设计
(一)复习准备
1.板演练习:
(1)88210+1(2)88[2(10+1)]
2.口算:
3.填空:
4.订正板演题。
提问:这两道题是我们以前学过的整数四则混合运算式题,那么运算顺序是什么?(同级运算从左往右依次演算;有两级运算的四则混合运算,应该先算乘除法即二级运算,再算加减法即一级运算;在含有括号的算式中,应该先脱掉小括号,再脱掉中括号。)
(二)学习新课
1.引出课题。
提问:这两道题与板演题有什么相同之处?有什么不同之处?(相同点:都是四则混合运算;不同之处:板演题是整数四则混合运算,这两道题是分数四则混合运算。)
今天,我们就一起来学习分数四则混合运算。(板书课题:分数四则混合运算。)
2.讲授新课。
(1)小组讨论:想一想,分数四则混合运算的.运算顺序是什么?
(2)汇报讨论结果:分数四则混合运算的运算顺序与整数四则混合运算的运算顺序相同。
(3)讨论例题。
①对例1提出问题:这个算式里含有几级运算?应该先算什么?再算什么?(这个算式含有两级运算,应该先算除法,再算加法。)
试做例1。
用投影仪进行订正,并请有错误的同学找出错误的原因,防止再出现类似的错误。
分数教学设计 3
【教学内容】
小学数学实验教材(北师大版)六年级上册第一单元P27-28内容。
【教学目标】
进一步加强对百分数的意义的理解,并能根据百分数的意义列方程解决实际问题。
通过解决实际问题进一步体会百分数与现实生活的密切联系。
【教学重点】
根据百分数的意义列方程解决实际问题。
【教具准备】
多媒体课件。
【学具准备】
【教学设计】
教学过程
教学过程说明
导入
通过前面的学习,我们知道百分数与生活有着十分紧密的联系。请同学们想一想,你能给大家说一些生活中用到百分数的事例吗?(让学生自由说一说)
家庭消费
下表是笑笑的妈妈记录的家庭消费情况:
年份
1985年
1995年
20xx年
食品支出总额占家庭总支出的百分比
65%
58%
50%
其他支出总额占家庭总支出的百分比
35%
42%
50%
你能给大家说说表格所表示的意思吗?
根据表中数据,你有什么发现?
教师提出问题:
1985年食品支出比其他支出多210元。你知道这个家庭的总支出是多少元吗?
你准备怎样解答这个问题?(小组讨论)
※你觉得直接列式方便吗?为什么?
展示解答过程
解:设这个家庭1985年的总支出是X元。
65%X-35%X=210
30%X=210
X=700
6、如果20xx年食品支出占家庭总支出的50%,旅游支出占家庭总支出的10%,两项支出一共是5400元,这个家庭的总支出是多少元?
※学生独立解决
※教师评价
下表是笑笑的妈妈记录的.家庭消费情况:
年份
1985年
1995年
20xx年
食品支出总额占家庭总支出的百分比
65%
58%
50%
其他支出总额占家庭总支出的百分比
35%
42%
50%
三、试一试
1、出示教科书P27试一试第2题
2、九五折是什么意思?
3、学生独立解答然后班内交流
解:设这本书的原价是X元。
X-95%X=6
5%X=6
X=120
四、练一练
教科书P28练一练第2题
“增产了两成”是什么意思?
展示解答过程:
解:设去年的产量是X吨。
X+20%X=36000
120%X=36000
X=30000
2、教科书P28练一练第4题
3、教科书P28练一练第5题
五、课堂总结
通过今天的学习你有什么收获?
课前布置学生了解有关生活中百分数的知识。
激发学生学习的兴趣,让学生在调查活动中,接触到更多的实际生活中的百分数,认识到数学应用的广泛性。
提出“各项支出与总支出的关系”,使学生从中了解百分与生活的关系。从数据的变化,让学生体会我们国家的经济不断发展,我们生活水平的不断提高。
学生己有了百分数的知识基础,对于解答这题让学生自己讨论,在讨论交流中,学生感受到百分数,体会百分数与现实生活的密切联系。
由于讨论的问题和数据都来自于学生,这样就使百分数更具有实际意义,学生的学习兴趣和积极性也会大大提高。
拓展学生的思维。综合应用所学的知识解决实际问题。
结合实际对学生进行思想道德教育,学会节俭。
分数教学设计 4
教学目标:
⑴使学生结合解决实际问题的过程,理解并掌握分数四则混合运算的运算顺序,并能按运算顺序正确计算;主动体会整数运算律在分数运算中同样适用,能运用运算律进行有关分数的简便计算。
⑵使学生在理解分数四则混合运算顺序以及应用运算定律进行分数简便计算的过程中,进一步培养观察、比较、分析和抽象概括能力。
⑶使学生在学习分数四则混合运算的过程中,进一步积累数学学习的经验,体会到数学学习的严谨性和数学结论的确定性。
教学流程:
一、基本训练。
直接写出得数。
5/8÷5/12= 1÷3/7= 1/8×2= 4/5÷3/5=
11/4×2/11= 4/9÷3/5= 0÷2/3= 12×3/8=
独立完成,矫正答案。
二、提供情境,完成知识迁移。
⑴提供情境,呈现例题。
先出示图片的左面部分,教师示意图片上画的是“中国结”,示意学生理解做一个小的“中国结”要2/5米彩绳,大的“中国结”要3/5米彩绳;再呈现图片的右面部分,要求学生列综合算式解答。
⑵学生自主解答,教师巡视。
学生独立解答,教师巡视。可能会呈现下面两种解法:
2/5×18+3/5×18 (2/5+3/5)×18
=36/5+54/5 =1×18
=18(米) =18(米)
发现有不同解答方法和不同书写形式的学生板书到黑板上。
⑵班级交流,揭示课题。
让学生交流算式中每一步的意思,体会解决问题的正确思考方法;观察算式,揭示课题——分数四则混合运算。
⑶小组合作,整理运算顺序。
学生介绍计算上面两题的计算方法,体会分数四则混合运算的'顺序和整数、小数四则混合运算顺序相同;以学习小组为单位,整理四则运算顺序;交流运算顺序:(板书)①同一级的运算,按从左往右的顺序。②含有二级的运算,先乘除,再加减。③有括号的,先算括号里的,再算括号外的。
⑷练习:先说出运算顺序,再计算。
13/14÷15/28×5/8+1/4 2/3+5/9×3/2+3/2
让学生先说说运算顺序和这样算的理由,再计算,两名学生板演;矫正反馈,注意书写格式,养成即时检查的良好习惯,即做好一步马上检查一遍,然后再做下一步。
⑸两种方法比较,整理运算定律。
比较2/5×18+3/5×18和(2/5+3/5)×18两个算式,理解隐含了乘法分配律,体会运算定律在分数四则混合运算中同样适用;比较两个算式计算哪个简单,体会适当运用运算定律可以使一些计算简便;以小组为单位,整理运算定律;班级交流,教师板书:加法交换律、结合律,乘法交换律、结合律和分配律。
三、巩固练习,内化知识。
⑴计算下面各题,注意使计算简便。
6/5×6/7-1/5÷7/6 12/7-(1/3÷7/15+4/5)
独立计算;再介绍可以怎样计算:可以用运算顺序完成计算,也可以运用运算律计算,感受何种方法简便,提醒能简便计算一般要用简便计算。
⑵完成练习十五第3题。
观察哪些题目可以简便计算,并说出理由。
⑶课堂作业。
完成练习十五2、4~5。
分数教学设计 5
一、教学内容
分数的基本性质。(课本第75-76页的例1、例2及“做一做”、第77页练习十四的第1-3题)
二、教材简析
《分数的基本性质》是人教版小学数学教材第十册的内容之一,在小学数学学习中起着承前启后、举足轻重的作用,它既与整数除法的商不变性质有着内在的联系,也是后面进一步学习分数的计算、比的基本性质的基础。分数的基本性质是一种规律性知识,分数的分子分母变了,分数的大小会变吗?分数的分子分母如何变化,分数的大小不变呢?学生在这种“变”与“不变”中发现规律。
三、教材处理
以前,教师通常把《分数的基本性质》看作一种静态的数学知识,教学时先用几个例子让学生较快地概括出规律,然后更多地通过精心设计的练习巩固应用规律,着眼于规律的结论和应用。随着课程改革的深入,教师们越来越重视学生获取知识的过程,但我们也看到这样的现象:问题较碎,步子较小,放手不够,探究的过程体现不够充分。《分数的基本性质》可不可以有别的教学思路呢?新的课程标准提出:“教师应向学生提供充分从事数学活动的机会,帮助他们在自主探索和合作交流的过程中真正理解和掌握基本的数学知识与技能、数学思想和方法”。根据这一新的理念,我认为教师可以为学生创设一种大问题背景下的探索活动,使学生在一种动态的探索过程中自己发现分数的基本性质,从而体验发现真理的曲折和快乐,感受数学的思想方法,体会科学的学习方法。所以,教师的着眼点,不能只是规律的结论和应用,而应有意识地突出思想和方法。基于以上思考,我以让学生探究发现分数基本性质的过程为教学重点,创设了一种“猜想——验证——反思”的教学模式,以“猜想”贯穿全课,引导学生迁移旧知、大胆猜想——实验操作、验证猜想——质疑讨论、完善猜想等,把这一系列探究过程放大,把过程性目标”凸显出来。
四、设计意图:
本课主要本着遵循小学数学课程标准“创设问题情境提出问题解决问题建立数学模型解释数学模型运用数学模型拓展数学模型”的指导思想而设计的。
1、通过故事创设问题情境,贴近学生生活,有利于激发学生学习兴趣。
2、从故事情境中提出问题,体现数学来源于生活。
3、小组合作学习,共同探究解决问题,让学生充分体验知识产生的过程。
4、从几组分数中分析,找到分数的基本性质,从而初步建立数学模型。
5、设计有坡度的练习,穿插师生互动,生生互动,让整个运用知识的形式活泼有趣。
6、在游戏活动中对数学知识进行拓展运用。
五、教学目标
1、知识与技能
(1)经历探索分数的基本性质的过程,理解分数的基本性质。
(2)能运用分数的基本性质,把一个分数化成指定分母(或分子)而大小不变的分数。
2、情感态度与价值观
(1)经历观察、操作和讨论等数学学习活动,使学生进一步体验数学学习的乐趣。(2)体验数学与日常生活密切相关。
3、过程与方法
(1) 经历观察、操作和讨论等学习活动,并在探索过程中,能进行有条理的思考,能对分
数的基本性质作出简要的、合理的说明。
(2) 培养学生的观察、比较、归纳、总结概括能力。
(3)能根据解决问题的需要,收集有用的信息进行归纳,发展学生的归纳、推理能力。
六、教学重点
理解分数的基本性质
七、教学难点
能运用分数的基本性质,把一个分数化成指定分母(或分子)而大小不变的分数
八、教学准备
教师:电脑课件
学生:圆纸片 长方形纸
九、教学过程:
(一)回顾复习,旧知铺垫。
课件出示复习题
1、商不变的性质
12÷3=( )
(12×10)÷(3×10)=( )
(12÷3)÷(3÷3)=( )
利用什么知识填空的?
2、除法与分数的关系
30 ÷ 120 =( )/( )
( )÷( ) =17/51
利用什么知识填空的?
(二)故事引人,揭示课题。
课件出示故事(动画):从前有座山,山上有座庙,庙里有个老和尚和一个小和尚,哦不对,是三个小和尚。小和尚最喜欢吃老和尚做的饼啦。有一天,老和尚做三块大小一样的饼,想给小和尚吃,还没给,小和尚就叫开了,“我要一块”,“我要两块”,“嘻嘻,我不要多,只要四块。”老和尚二话没说,把第一块饼平均分成4块,取出其中1块给第一个和尚;把第二块饼平均分成8块,取其中2块给高和尚。把第三块饼平均分成16块,取其中的4块给了胖和尚。小朋友,你知道哪个和尚分得多吗?
生1:胖和尚吃的多。 生2:矮和尚吃的多。 ……
师:到底谁回答得对呢?我们一起动手分饼来求证吧
1、合作探究
师:请同学们以两人一组,拿出三个大小相等的圆,分别用阴影部分表示每个和尚分得的饼(教师观察,学生小组合作,有平均分的,有涂色的,小组成员配合默契。)
师:比较一下阴影部分的大小,结果怎样?
生:阴影部分的大小相等。
师:阴影部分相等说明每个和尚分的饼相等.
师:请同学们用分数表示阴影部分
师:阴影部分相等说明这三个分数怎样?
生:三个分数相等。(随着学生的回答,老师将板书的三个分数用“=”连接。)
2、组织讨论。
师:仔细观察这三个分数什么变了,什么没有变?
让学生小组讨论后答出:它们分数的分子和分母变化了,但分数的大小不变。
师:它们各是按照什么规律变化的呢?我们今天就来共同研究这个变化规律。
3、比较归纳
同学们:从左往右观察,这三个分数的分子和分母是按照什么规律变化的才保证了分数的大小不变的?
集体讨论几名学生回答后,要求学生试着归纳变化规律:分数的分子和分母都乘以相同的数,分数的大小不变。(边讲边板书)
师:从右往左看,分数的分子和分母又是按照什么规律变化的?通过分析比较每组分数的分子和分母,得出:分数的分子和分母都除以相同的`数,分数的大小不变。(边讲边板书)
4、揭示规律
教师小结:“刚才大家都观察得很仔细,像分数的分子、分母发生的这种有规律的变化,它的大小不变。就是我们这节课学习的新知识。(板书课题:分数的基本性质)
师:“什么叫做分数的基本性质呢?就你的理解,能把它归纳成一句话吗?(小组讨论发言)
师:刚才同学们都用自己的语言说了分数的基本性质,我们的书上也总结了分数的基本性质,现在请打开书看到75页。看看和我们总结的有什么不同,并用波浪线表出关键的词。(如:同时,相同,0除外等)
全班讨论:为什么要规定0除外”?
引导:现在同学们知道了聪明的老和尚是用运用什么规律来分饼,既满足小和尚的要求,又分得那么公平?
(三)梳理沟通,灵活运用。
1、分数的基本性质与商不变的性质的联系。
想一想,根据分数与除法的关系,以及整数除法中商不变的规律,你能说明分数的基本性质吗?
启发学生说出它们之间的联系:
(1)分子相当于被除数,分母相当于除数;
(2)被除数和除数同时乘以或除以相同的数就相当于分子和分母同时乘以或除
以相同的数;
(3)“相同的数”中要求“0除外”;
(4)商不变相当于分数的大小不变。
2、分数基本性质的应用
(1)出示课本第76页例2,把2/3 和10/24 分别转化成分母是12而大小不变的分数。
(2)认真审题,弄清题意。
要求学生读题后归纳出题目的要求。
a.分母都变成12
b.分数的大小不变
(3)想一想:怎么化,根据什么?
过程要求:
a.学生独立思考,完成题目要求;
b.全班反馈,教师课件显示;
(四)多层练习,巩固深化。
1、完成教科书第77页练习十四的第1-3题。
(1)第1题
此题着重练习分数的相等和不等。练习时,让学生按照题目的要求涂色。
(2)第2题
此题是运用分数的基本性质比较分数大小的实际问题,学生在练习中将2/5化成4/10,或者把4/10化成2/5,再作比较,都是可以的。
(3)第3题,说出相等的分数(对口令)
此题是运用分数基本性质的游戏练习.游戏时,让学生以同桌为单位.仿照第3题的样子,一个人先说一个分数,另一个人回答一个相等的分数,然后交换先后顺序。
2、教科书76页 “做一做”
(1)由学生独立完成,然后同学交流.
(2)全班反馈,说一说思维过程.
(五)小结
教师:同学们,通过今天的学习,你有什么收获?
,题界知家数同时乘以或除以相同的数就相当于分子和分母同时乘以或除
(六)动脑筋出教室游戏(机动)
让学生拿出课前发的写有分数的纸片,要求学生看清手中的分数。与 相等的,报出自已的分数后先离场,与相等的再离场,与相等的最后离场。
十、板书设计
商不变的性质
被除数和除数同时乘或除以相同的数(0除外),商不变。
分数与除法的关系
a÷b =a/b(b≠0)
分数的基本性质
分数的分子和分母同时乘或除以相同的数(0除外),分数的大小不变。
分数教学设计 6
教学目标:
1、使学生充分理解分数混合运算的运算顺序,明确分数混合运算与整数混合运算的关系,并能正确、熟练地进行计算。
2、能运用所学的有关分数混合运算的知识解决生活中的实际问题,感受解决问题方法的多样性与灵活性,提高计算能力和解决问题的能力。
教学重点:
能用所学知识解决生活中的.实际问题。教学难点:能运用多种方法解决生活中的实际问题。教具准备:多媒体,小黑板。
教学过程:
(一)情境引入,回顾再现。
陈爷爷每天绕操场跑6圈,2分钟可以跑半圈。照这个速度,陈爷爷每天跑步要用多少时间?
学生解答:6÷(1/2÷2)=6÷1/4=24(分)
师:这就是我们学过的有关分数混合运算的知识,这节课,我们就来进行相应的练习。
(二)分层练习,强化提高。
1、练习九的第1题,。提示:对于三步计算的题来说,如果选择比较合理的算法,也只要两步就能完成计算。
2、计算下面各题
2/9x0.375÷6/7
4÷ 8/3 – 0.6
引导学生注意:遇到小数计算,要先化成分数再进行计算。
3、解下列方程
5X=15/19
2/3X÷1/4=12
4、这篇文章太长了,3小时才录入了1/3。照这样的速度,李叔叔工作8小时,可以录入这篇文章的几分之几?还剩几分之几没有完成?
(对于本题来说,如果学生列成8÷3×1/3也是对的。)
5、练习九的第10题。
要求学生按照指定的程序计算,再通过比较,有所发现并作出解释。如果计算正确,就能发现得数等于原来的数。其原因是2/
3、3/4的倒数与1/2的积正好是1。
(三)自主检测,评价完善
出示检测题卡,让学生独立完成后,集体交流纠正。
(四)归纳小结,课外延伸
1、通过这节课的练习,你掌握了哪些知识?
2、把你的感受写一写,写成一篇周记的形式。
分数教学设计 7
教学内容:人教版五年级数学下册57页内容及58、59页练习。
教学目标:
知识与技能:通过教学使学生理解的掌握分数的基本性质,能运用分数的基本性质把一个分数化成指定分母(或分子)相同而大小不变的分数,并能应用这一性质解决简单的实际问题。
过程与方法:引导学生在参与观察、比较、猜想、验证等学习活动的过程中,有条理,有根据地思考、探究问题,培养学生的抽象概括能力。
情感、态度和价值观:使学生受到数学思想方法的熏陶,培养乐于探究的学习态度。
教学重点:理解和掌握分数的基本性质。
教学难点:应用分数的基本性质解决问题。
教学准备:预习生成单、作业纸、课件
教学课时:一课时
教学过程:
一、导入新课,揭示课题
1、师:通过昨天的预习,你知道我们今天要学习什么内容?(生:分数的基本性质)
2、师:针对这个内容,同学们做了充分的预习,相信你们一定提出了不同的数学问题,现在请组长带领组员提炼出你们组最想研究的问题。
3、指名学生汇报。
4、师:同学们,不管你们提出什么样的问题,都与分数的基本性质有关,今天我们就带着这些问题走进课堂。
二、检查预习,自主探究
1.出示预习生成单:(师:我们已经预习了这部分内容,请同学们组内交流一下你们的.预习成果,形成统一意见准备汇报。)
2.指名上台展示并汇报。(师:哪个组的同学愿意最先上来展示你们的成果?)
3.(学生展示中注意分工汇报,在汇报中要注意学生用比一比的方法证明涂色部分相等,如果有用分数的意义的理解“都是相同纸的一半”或者“分子是分母的一半”理解也要给予肯定,教师应及时提出,照这样一半的理解,提问:你能在写出一个和他们大小一样的分数吗?教师及时的板演,
4.师:其他同学还有补充吗?你们得出这个结论了吗?
三、合作交流,探究新知
1.师:第一张纸涂色部分是这张纸的(学生说二分之一),第二张纸涂色部分是这张的(四分之二),第三张纸涂色部分是这张纸的(八分之四),涂色部分都相同,也就证明这三个分数的大小也(学生说相等),可是,它们的分子分母却不相同,他们有没有一定的变化规律呢?我们通过合作交流来探究这个问题。
2.出示合作要求(课件),指名学生读一读。
3.学生合作交流,探究学习。
4.学生汇报中教师要及时纠正学生的语言要规范,同时,可以让小组回想补充,特别是,跳跃的两个分数的分子和分母之间的变化规律是怎样?
5.指导汇报,总结规律。谁能完整的说一下你们刚才总结出的规律?
6.教师归纳板书:分数的分子和分母同时乘或者除以相同的数,分数的大小不变。
7.请同学们读一读这句话,想一想:还有需要补充的内容吗?(0除外)
8.再读一读,说说这句话中哪个词比较关键。
9.拓展深化,加深理解,完成练习,思考:分数的基本性质与商不变的性质之间的联系。(练习一)这个过程也要看学生的生成在哪,教师及时的给予肯定。
9.教师小结:通过刚才的学习,孩子们的表现特别出彩,老师相信你们接下来的表现会更棒。
四、应用拓展,新知内化
1.出示例2,指名读题,理解题意。
2.师:你觉得解决这道题应该利用什么知识?(生:分数的基本性质)
3.学生独立在练习本上完成,指名板演,集体订正。
4.小结:刚才,我们通过自主学习、小组探究知道了什么是分数的基本性质,下面就应用分数的基本性来解决一些实际问题。
五、当堂检测
(一)、下面每组中的两个分数是否相等?相等的在括号里画“√”,不相等的画“X”。
和()和()和()和()
(二)、填空。
======
(三)、把下列分数化成分母是10而大小不变的分数。
===
(四)、涂色表示出与给定分数相等的分数。
(五)、如果一堂课40分钟,哪个班做练习用的时间长?
六、课堂小结:通过这节课的学习,你学会了什么?
板书设计:
分数的基本性质
分数的分子和分母同时乘或除以相同的数(0除外),分数的大小不变。
这节课最多的考虑就是分数的基本性质这个规律怎样才能让学生真正的夯实,怎样设计才能让学生水到渠成的加深了理解。在练习的设计和过渡语的设计都是关键。
分数教学设计 8
设计说明
本节课通过丰富的情境创设和动手操作,引导学生利用列表法抽象、概括分数的意义,并在操作中发现同一个分数对应的整体“1”不同,所表示的具体数量也不同。在学生原有的认知水平基础上,这里主要是促进学生加深理解分数的意义和分数的相对性,让学生在活动中发现问题并讨论解决。
针对上述内容,本节课教学在设计上主要有以下两大特点:
1.借助动手操作,列表整理,将知识深化加工,加深对分数的再认识。
动手操作是学生学习数学的主要方式之一。本节课的教学设计中,为学生提供了充分的动手操作机会。这里的“再认识”已经很明确地告诉我们这里学习的分数知识与原来学习的分数知识是有区别的:一是在具体的情境中体会“标准”不同,分数所表示的意义也不同;二是结合具体的情境进一步理解“整体”与“部分”的关系。这样使学生不仅获得数学知识,更培养学生的探索精神。
2.通过情境的创设,促进学生对分数相对性的理解。
丰富有趣的情境能充分激发学生的`学习兴趣和求知欲。因此,本节课的设计采用直观、形象的材料,创设如“拿铅笔”“画图形”等活动,在学生发现问题后,积极思考,通过思考、分析,引导学生自己解决问题,提高学生的分析能力。体会到同一个分数对应的“整体”不同,所表示的具体数量也不同。
课前准备
教师准备PPT课件两盒数量不等的铅笔(数量都为偶数)
学生准备两盒数量不等的铅笔(数量都为偶数)
教学过程
⊙复习旧知,引入新课
1.复习分数旧知。
师:你们能用分数分别表示这三个图形的涂色部分吗?(课件出示图形:)
预设生:这三个图形用分数表示分别是,,。(课件展示结果)
师:前两个图形的相等吗?为什么?
预设生:前两个图形的相等,因为这两个图形大小相同。
设计意图:通过复习旧知,使学生理解整体“1”相同,同一个分数对应的部分也相同,为整体“1”不同的情况作铺垫。
2.举例说明的意义。
(1)独立想一想,并说一说可以表示什么。
(2)全班交流并填写表格。
一个整体
平均分的份数
取几份
用分数表示
总结:(课件出示)把一个整体平均分成若干份,其中的一份或几份,可以用分数表示。
师:同一个分数,当对应的整体发生变化时,部分量也会跟着变化,看来还有许多关于分数的知识需要我们进一步学习。今天,我们就对分数进行再认识。[板书课题:分数的再认识(一)]
设计意图:通过“说一说”使学生理解“一个整体”的含义,即分数意义中的整体,可以是单个图形,也可以是多个图形,还可以是多组图形这三种情况,丰富学生对分数意义的理解,同时初步感知当整体不同时,同一个分数对应的具体的量也不同。
⊙合作交流,探究新知
1.画一画。
一个图形的是,画出这个图形。
(1)理解题意。
师:读“一个图形的是”这个已知条件,你们知道了什么?
预设生1:把这个图形平均分成了4份,其中的一份就是2个□。
生2:这个图形一共有8个□。
(2)画出原图形。
师:请同学们动手画一画。
展示画法:
观察画法,质疑:三个图形的形状各不相同,行吗?
(学生小组讨论、交流)
预设生:三种画法都是正确的。
分数教学设计 9
一创设情境
昨天老师让你们收集生活中的的百分数,你们找到了吗?
展示学生收集的百分数。
你能试着读出中这个百分数吗?生读一读。
生活中有这么多的`百分数,这说明了什么?
二探究新知
1师出示收集的百分数
这是一条裤子的商标牌,请看这里:
展台展示:面料90%棉10%丝
找生读一读,谁能把90%写在黑板上。生试着写,师范写:先写数,再写百分号,读作百分之九十。
2能用一个简单的图表示出来吗?
生用图表示,然后展示出来。
讨论:90%表示什么意思。生说师板书:棉
材料是这条裤材料的90%。
三继续展示:
(1)地球表面中海洋面积约占71%。
(2)我国有56个民族,其中汉族人数占92%,少数民族人口占8%。
(3)山东省小学生近视率达53.5%。
学生说出每一个百分数的意义,然后师板书。
4小结
什么是百分数?生试着说一说,师板书。
5生同位间互相说一说收集的百分数表示的意义。
6出示一瓶饮料
饮料中果汁含量30%,把饮料倒入杯子中,问:杯子里果汁含量占百分之几?生说,师继续倒,让生说一说。
7课件展示林书豪的资料
请你用数学的眼光看这段资料,1/2能用百分数表示吗?3/4米呢?
分数和百分数有什么联系和区别?
三巩固练习
1用百分数表示
(1)大部分:95%15%0.5%
(2)神舟一号到神舟八号全部发射成功:80%98%100%
(3)栽种的树木一小部分没活:80%5%50%
(4)校车超载:95%100%300%
2统计:盒子里放10个球,可以放白球和红球,如果放白球的可能性为90%,应怎么放?
3用百分数表示下面成语:
百里挑一十拿九稳百发百中一箭双雕半壁江山
四总结
()%的开心()%的收获()%的遗憾
送你一句名言
爱迪生:99%的汗水+1%的灵感=成功
分数教学设计 10
教材分析
百分数在日常生活中运用非常广泛,它源于分数,又有别于一般分数。教材在安排教学百分数意义时,从实例出发,创设情境,把学生带入生活中去学习百分数。通过比较得出百分数的概念,即“表示一个数是另一个数的百分之几的数叫做百分数”。要特别注意的是百分数只表示两个数相比的一种关系,不表示一个数值。百分数的后面不能带单位表示一个具体的量。这就是百分数与分数之间的'区别,所以百分数也叫做百分比或百分率。教学中,要注意孕含百分数应用题的基本思想,通过让学生分析一些百分数表示谁与谁比,为进一步学习打好基础。并抓住一些有说服力的数据和统计资料,对学生进行爱祖国、爱社会主义的思想教育。
学情分析
学生对于百分数并不陌生,他们有的可能已经认识百分数,并且能够正确读出百分数,但大多数学生对百分数的意义的认识和理解还不十分准确,因此,教学中引导学生理解了百分数表示的是一个数量是另一个数量的百分之几,也就是百分率的含义尤为重要。
教学目标
1、知识与技能:使学生初步认识百分数,感知和理解百分数的意义;能正确读写百分数;理解百分数与分数在意义上的区别;培养学生的分析、比较、概括等思维能力。
2、过程与方法:组织与引导学生经历学习过程,通过讨论交流,体验百分数的意义及在生活中的广泛应用,培养学生的问题意识及合作、交流能力和自学能力。
3、情感、态度与价值观:感受数学在现实生活中的价值,体会百分数与日常生活的密切联系及在实践中的广泛应用。激发数学学习的乐趣,培养学生热爱生活,热爱数学的情感。
教学重点和难点
教学重点:让学生充分体验,理解百分数的意义。
教学难点:让学生理解百分数和分数在意义上的区别和联系。
分数教学设计 11
一、教学内容分析
1.教学主要内容
《百分数的认识》是北师大版小学数学五年级(下)第六单元的第一课时。这一课的主要教学内容是认识百分数,会正确读写百分数。在具体情境中,正确解释百分数的意义,了解百分数与分数的异同,体会百分数与日常生活的密切联系。
2.教材编写特点
百分数学生曾经在现实生活中有所接触,但没有一个完整的正确的认识。本课是在学生学过整数、小数特别是分数的意义和应用的基础上设计的。教材在设计上注重了数学知识来源于生活的思想,以足球比赛中谁来罚点球这一具体情境导入,让学生通过比一比,算一算等多种形式与方法来感悟学习百分数的重要性与必要性。然后再以形式多样的习题来巩固学生的认知。教材遵循由浅入深,由具体到抽象的过程引领学生逐步认识百分数。充分关注了学生学习兴趣与各种能力的培养。
3. 教材内容的数学核心思想
由实际生活抽象出具体的数学问题,在尝试解决数学问题的过程中关注学生对知识的理解程度与各种能力的形成情况,再将抽象的数学思想运用于解决实际生活中的问题。从而使学生感受数学在现实生活中的应用价值,体会数学学习中的乐趣。
4.我的思考
教材中呈现的内容与我本节课想传授给学生的内容有一定的距离,在充分研读教材后,我对教材进行了再创造,放弃了教材中的二个情境,结合学生的实际设计了评选文艺节目的教学情境,从而引出百分数,体会引入百分数的必要性。而且本堂课我努力营造一个开放的课堂,让学生在课前搜集生活中的百分数,自主探索百分数的意义。学生对“百分数的意义”的理解在具体的实例中自主感悟和逐步抽象,在探讨选哪个节目参加公开汇演时,自然而然的明确了百分数的优越性。练习的内容只有一个题是来源于教材,这样会不会与教材编写者的看法有
所背离。但就我个人认为教师在课程实施中完全有空间和可能对教材进行“再加工,即“用教材教”而不是“教教材”。鉴于此,我在传授本课时,对教材进行了部分改动,但我认为这很重要,因为每位教师的教学方法、思路都不尽相同,面对的教学个体――学生也不一样,只要这种方式有利于学生的学就可以。
二、学生分析
1.学生已有知识基础(包括知识技能,也包括方法)
在四年级与五年级学生已学过了小数、分数的相关知识。对于将分母不同的分数如何进行通分已掌握的相当熟练。
2.学生已有生活经验和学习该内容的经验
学生在日常生活中已经接触过百分数,并且能用自己的语言说明白百分数表示的意义。
3、学生学习该内容可能的困难
① 百分数与分数的区别。
② 练习题中关于百分数填空的活用部分。
4、学生学习的兴趣、学习方式和学法分析
以自主探究、合作交流为主,通过比一比选哪个节目比较合适,读一读百分数、写一写百分数、选一选百分数等多种方式进行新知的`传授与学习。
三、学习目标
1.知识与技能:使学生理解百分数的意义;掌握百分数的读、写法;知道百分数在实际生活、生产中应用非常广泛。能够正确读写百分数。弄清分数百分数的异同。会用百分数分析、解决一些实际问题。培养学生的搜集信息、分析、概括等思维能力。
2.过程与方法:以选节目的情境作为本课的切入点,让学生体会百分数在日常生活中的应用是很重要的,激发学习百分数的兴趣。围绕这一情境出现的百分数来传授百分数的读、写法。再联系生活中的百分数来理解百分数的意义。以形式多样的练习题来巩固学生对百分数的认知。
3.情感、态度、价值观:激发学生求知欲,让学生在民主、和谐、活跃的课堂气氛中学习,使学生能体验到数学与日常生活密切相关,激发学生求知欲,并适时进行思想品德教育。
四、教学重、难点
教学重点:百分数的意义和读法、写法
教学难点:百分数与分数的联系和区别
五、教学准备
多媒体课件、学生每人课前搜集的如商品标签、包装盒上的百分数等资料。
六、教学过程
一、创设情景,探究新知:(大约30分钟)
1、探究意义及写法:(14分钟)
(1)师:同学们喜欢看文艺节目吗?我们学校的艺术节上,同学们表演了很多优秀的文艺节目,获得了大家的好评。据说,市里将会在各校文艺节目中评选出一些更优秀的节目参加全市的公开汇演,如果我们学校也有幸要选送一个节目去,你觉得选哪个节目去更合适呢?老师已调查了一些同学,你们看:
出示表格信息:
看了这张表格,你认为应该选送哪个节目?(设计意图:引起学生认知冲突,激发学生探究新知的欲望。)
预设:当学生说选《苗山姑娘》最好 。没有其它同学说别的,老师说:好,这是你们的想法。我们再看一下被调查的人数。你们还坚持自己的想法吗?
(2)课件再补充出示:
问:现在有别的想法吗?你能一下子看出选哪个节目最好吗?怎么办呢?(引导学生计算)
(3)找生板演方法。
预设学生可能有以下几种情况出现:
化小数: 9÷10=0.9 17÷20=0.85 21÷25=0.84 43÷50=0.86 化分数: 9÷10=9/10=90/100 17÷20=17/20=85/100
21÷25=21/25=84/100 43÷50=43/50=86/100
(4)订正做法:(找学生做:得几分之几的分数的)
我们来看看他是怎么做的?生说:9÷10用喜欢的人数除以被调查的人数,师接问:也就是谁和谁比呢?比的结果是谁占谁的几分之几?
第二个算式呢?第三个呢?
(设计意图:订正做法,与其他学生形成互动。)
(5)现在一下子看出来了吗?选哪个节目最好呢?刚才有同学说通分,就是把分母怎样?行吗?那就通分吧。
谁来说:这三个分数都通分成多少?
(6)现在你能一下子看出来选哪个节目最好吗?为什么现在就看出来呢? (设计意图:揭示分母相同便于比较)
(7)看样子光看喜欢的人数是不行的。那我们必须求什么?各个节目喜欢的人数占被调查的人数百分之几,这样的数叫做百分数,为了与分数区别及便于书写,一般不写成分数形式,而常写成带有这种%符号的形式。问:谁知道这叫什么?
怎样把90/100写成带%的呢?谁愿意到黑板上给大家示范写呢?
纠正百分数的写法,一般先写分子(指90/100)分母和分数线简写成%, 谁来把85/100 86/100写成带%的呢?其它同学练习本上。(同桌评价) 写百分数时你想提醒同学们注意什么?
会写百分数了,会读吗?指70%。(生读)评价:还没学百分数,就会读了,90%是谁和谁比得到的?喜欢《三句半》的人数是被调查的人数的90%(贴条)
分数教学设计 12
一、教材与学情分析
百分数是在学生学习了整数、小数特别是分数的概念和应用题的基础上进行教学的。百分数在实际生活中有着广泛的应用,也是小学数学中重要的基础知识之一。而百分数的意义和读写法又是这部分内容的基础,学生只有理解了百分数的意义,才能正确地运用它解决实际问题。所以学好本节知识是本单元的关键。教材联系学生的生活实际,在感知和理解百分数意义的过程中,知道百分数的重要性和应用的广泛性。在总结百分数与分数的联系和区别的过程中,渗透事物的相互联系又相互区别的观点。
由于百分数应用的广泛性,学生对百分数的认识并不是一无所知。但对百分数的意义还是模糊不清的,有的学生认为百分数就是分母是100的分数。因此,课前让学生收集生活中的百分数,在课内进行交流,以激发学生学习的兴趣。从生活实际引入,引导学生体验百分数的产生的过程,通过讨论、探索、概括形成百分数的概念。采用学生自主学习、小组合作、交流等学习方法,培养学生分析、比较、抽象等思维方法和能力。
二、教学目标
(一)、知识与技能:使学生初步认识百分数,理解百分数的`意义,能正确读写百分数;了解百分数和分数在意义上的不同点。
(二)、过程与方法:收集、整理有关百分数的信息,通过讨论交流,体验百分数的意义及在生活中的广泛应用,培养学生分析、比较、概括等思维能力。
(三)、情感态度与价值观:培养学生自主探究的精神,感受数学在现实生活中的价值,激发学生学习数学的兴趣。
三、教学重点
让学生充分体验、理解百分数的意义。
四、教学难点
让学生了解百分数和分数在意义上的联系和区别;在具体的情境中理解百分数的含义。
1 / 41 / 41 / 4
五、教学准备
多媒体课件、课前让学生收集的生活中的百分数。
六、教学过程
(一)激趣导入
1.谈话引入爱迪生的一句名言:天才=99%的汗水+1%的灵感。
2.出示课件上含有百分数的图片。
问:你知道这些数叫什么数吗?
学生讨论后,教师明确:像上面这样的数,如:99%、65%、34.5%、
120%……叫做百分数。
3.引导学生交流课前搜集到的百分数资料。
师:同学们收集到的百分数资料可真多啊!看来百分数在生产、生活中的应用非常广泛。那人们为什么喜欢用百分数?用百分数有什么好处?百分数有什么含义呢?带着这样的问题,让我们一起走进今天的数学课堂——“百分数的认识。(板书课题)
(二)探究新知
1.感知百分数的意义。
(1)结合课件信息,说一说每个百分数的意义。
①第一幅图中的70%:表示棉布占这件T恤的。
②第二幅图中的38%:表示酒精占这瓶酒的。
……
2.明确百分数的意义。
(1)看看这些百分数的意义有什么共同特点呢?
引导学生观察,和同桌交流。
(2)引导学生得出:
百分数表示一个数是另一个数的百分之几。(板书)
指出:正因为百分数表示的两者之间相比的关系,所以百分数也叫做百分率或百分比。
(3)让学生同桌互相交流自己收集的百分数的意义。
2 / 42 / 42 / 4
(4)课件出示:学生近视率应引起高度的重视。根据去年年底的统计,我市学生的近视情况如下:小学生:18%
初中生:49%
高中生:64.2%
让学生体会百分数的好处,并说一说每个百分数所表示的意义。
3.探究百分数的读法和写法。
(1)探究百分数的读法和写法。
师:同学们认识了百分数,那百分数应该怎样读和写呢?
①学生尝试读百分数。(读作:百分之二十二)
②学生尝试写百分数。(写作:35%)
③游戏。在10秒内,写出10个不同的百分数。
师:你能用一个百分数来表示你完成的情况吗?让学生说一说。
(2)引导学生归纳总结百分数的读法和写法。
①读法:百分数读作“百分之…”。
②写法:百分数通常不写成分数的形式,而在原来的分子后面加上百分号“%”。我们写百分数时要注意先写数,再写百分号“%”。写百分号时先写左上角的圆圈,再写斜线,最后写右下角的圆圈,两个圆圈要写得小一点,以免与数字0混淆。
4.百分数与分数的联系和区别。
(1)观察下面的两道题:看哪一个分数可以用百分数表示?
运走了一堆煤的。
一堆煤重吨。
问:百分数和我们学过的分数在意义上有什么区别吗?
(2)小组内讨论交流,然后全班汇报:
从意义上讲,百分数只能表示两个数的关系,而分数不仅可以表示两个数的关系,还可以表示一个具体的数量。
也就是说,分数后面可以带单位名称,也可以不带单位名称;百分数后面不可以带单位名称。
(三)趣味练习
3 / 43 / 43 / 4
1.课件出示趣味百分数练习题。
①:把一枚硬币随意抛在桌面上,正面向上的可能性接近(%)。
②:太阳从东方升起的可能(%)。
③:你认为“海底捞针”捞到的可能性为(%)。
2.趣味数学。(找出成语中的百分数)
百战百胜十拿九稳一箭双雕百里挑一半壁江山
(四)、课堂总结
通过本节课的学习,你有哪些收获?
(五)、布置作业
完成教材83页1、2题。
(六)、板书设计
百分数的认识
百分数表示一个数是另一个数的百分之几。 22%
读作:百分之二十二百分数也叫做百分率或百分比。百分之三十五写作:35%
4 / 44 / 44 / 4
分数教学设计 13
教学内容:
教科书第45-46页的例4、例5及相应的“试一试”,完成随后的“练一练”和练习九第1-5题。
教学目标:
1.通过操作活动使学生理解分数乘分数的算理,从而掌握计算方法。 2.培养学生动手操作的能力和观察推理能力。 3.养成计算仔细、书写规范的良好的学习习惯。
教学重点:理解分数乘分数的算理,掌握计算方法。教学难点:理解分数与分数相乘的意义。
教学准备:师:4张长方形纸
生:4张长方形纸
教学过程:
一、创设情境,引入新课
1.师:我们学校暑假期间粉刷了部分教室(出示粉刷墙壁的画面),提出问题:装修工人每小时粉刷这面墙的1/2,4小时可以刷多少?
2.学生列式解答:1/2×4=2问:为什么用乘法计算?
3.刚才我们解决了4小时粉刷多少的问题,那么1/4小时可以粉刷这墙的几分之几?
怎样列式?为什么这样列?
4.揭示课题:1/2×1/4看看这道算式有什么特点?“分数乘分数”。(板书课题)如何计算呢?这就是我们今天要学习的新内容。
二、动手操作,探究算理
1.师:下面我们一起来探讨分数乘分数怎样计算。拿出准备好的长方形纸,用它表示这面墙,先涂出1小时粉刷的面积,涂出这张纸的几分之几?
学生动手操作,交流是怎样涂的。
2.师:求1/4小时粉刷这面墙的几分之几,就是求1/2的1/4是多少。小组讨论一下,1/2的1/4应该怎样涂?
小组汇报:把涂出的1/2部分再平均分成4份,涂出其中的1份。
3.师:从纸上可以看到,1/2的1/4占这张纸的几分之几?(1/8)
我们可以得到1/2×1/4=1/8。根据涂色的过程,你能说说是怎样得到的吗?
4.学生讨论,交流汇报,教师小结:我们先把这张纸平均分成2份,1份是这张纸的1/2,再把这1/2平均分成4份,也就是把这张纸平均分成了2×4=8份,1份就是这张纸的1/8。所以,1/2×1/4=1×1/2×1/4=1/8(板书)。
三、迁移延伸,猜想法则
1.提出问题:3/4小时粉刷这面墙的几分之几?
师:怎样列式?1/2×3/4表示什么?(表示1/2的3/4是多少)你能涂色表示1/2的3/4吗?
2.学生动手操作,交流计算方法和思路:与前面一样,也是把这张纸分成2×4=8份,不同的是取其中的3份,可以得到1/2×3/4=1×1/2×3/4=3/8(板书)。
3.猜一猜:观察上面2个算式,猜想一下分数与分数相乘是怎样计算的?
学生猜想得出:分数乘分数,应该分子乘分子,分母乘分母。
四、动手操作,验证猜想
谈话:这个猜想很有价值,对不对呢?我们还要举一些例子来验证。
1、出示例5的填空题和长方形图。
2、结合题意提问。
3、操作验证:
(1)提出要求:
(2)学生操作活动,一生板演,师巡视-(3)组织交流,证实猜想是正确的。
五、比较归纳,得出法则
1、引导学生仔细观察例4、例5四道算式:
提问:在这些算式中,你发现积的分子、分母与两个因数的分子、分母各有什么关系?
2、在学生独立思考基础上,再在小组里交流。
3、在交流中归纳总结方法;分数和分数相乘,用分子相乘的积作分子,分母相乘的积作分母。
六、试一试
1、学生尝试解答,指名板演,核对时说一说怎样想的'?
2、明确:计算过程中,能约分的,要先约分再算出结果。
七、方法推广。
1、出示:请用分数和分数相乘的方法计算下面各题
2、提示:整数都可以看成分母是1的分数。
3、学生尝试解答完成填空。指名板演。
4、追问:分数与分数相乘的计算方法适用于分数与整数相乘吗?为什么?
5、说明:分数乘法也可以像下面的这样计算,教师示范:
6、小结:今后计算分数乘法时,照上面的样子去做,而不必把整数改写成分母是1的分数,这样比较简便。
八、巩固练习,深化提高
1、完成“练一练”学生独立完成,四名学生板演。
交流时选择部分题目,让学生说一说计算过程。注意书写格式。
2、完成练习九第1题
3、完成练习九第3题学生独立判断,分析错误原因,并进行订正。
4、完成练习九第4题学生先直接在书上写出得数,再引导学生比较每组的两道题,说说计算的过程有什么相同和不同的地方。
九、总结
本节课学习了分数乘分数,你有什么收获?我们是怎么得到这个计算方法的?
十、课堂作业:
练习九第2题、第5题。
课后反思
让学生充分体验还是落实基础知识?
整节课的大部分时间都是学生的探索、讨论活动:先让学生从情境问题,在解决现实问题的同时为后面的研究提供讨论的素材,有了研究素材后抽象出数学问题,让孩子们继续研究讨论提出猜想,最后在举例检验猜想后形成共识,得到分数乘分数的计算法则,理解算理,由于学生的自主探索,化费了大量时间。
本节课时间安排已经很紧凑了,但时间还是没能合理安排。这一现象不仅使我想到:在平时的课堂教学中,我更注重的是怎样让孩子们参与学习的过程,如何让孩子们在探索中学习,很少考虑作业时间如何安排,经常让学生课后或中午去完成,加重了学生的负担。
那么,我们是让孩子们停下探究的脚步参与练习,草草收场去完成作业,还是让孩子们每节课都有探索、拓展的机会呢?
分数教学设计 14
一、教学目标
(一)知识与技能 通过具体的问题情境,探索并理解一个数除以分数的计算方法,能正确地进行计算。
(二)过程与方法 借助直观,经历一个数除以分数的计算方法的探究、推导过程,运用转化的思想领会计算方法的由来。
(三)情感态度和价值观
在数学学习过程中培养分析能力、知识的迁移能力、推理能力。
二、教学重难点
教学重点:探究并得出的一个数除以分数的计算方法。
教学难点:对一个数除以分数的算理的理解。
三、教学准备
多媒体课件。四、教学过程
(一)复习铺垫,温故旧知
1.计算。
2.说说下面的数量关系。
小何3小时走了9千米,平均每小时走多少千米?
3.填空。
小时有()个小时;1小时里有( )个小时。
(二)创设情境,提出问题
教学教材第31页例2。 小明小时走了2 km,小红小时走了 km。谁走得快些?
教师:题中有哪些信息?“谁走得快些?”实际上就是比较什么?你能根据题意列出算式吗?
预设:学生能叙述题中告知的信息是小明和小红各自行走的时间和对应的路程。借助前面的教学环节中对数量关系的描述,能理解“谁走得快些?”实际上是比较谁的速度快,速度=路程÷时间,由此根据题意分别列出算式(三)引导“转化”,探究新知 ,。
教师:上一节课我们已经学会了分数除以整数的计算方法,
现在你能试着把转化成除数是整数的除法并加以计算吗?
预设:
1.要想把除数变成整数而商不变,根据商不变性质,可得
(km)。
2.同样根据商不变性质,但除数可以化成1,即
(km)。
(四)数形结合,探明算理
教师:看来同学们对自己的计算方法都非常自信,那么教材中是怎样推导计算方法的呢?让我们一起来看一看。
1.阅读理解线段图。
教师:线段图中1小段表示什么?3小段又表示什么?(借助直观图,启发学生:1小时里面有3个小时。)
教师:求1小时走了几千米(即3小段),应该先求什么?
(借助直观,启发:应该先求1小段走了多少千米。)
2.阅读理解算式。
结合对话框,引导学生理解(km)。 教师:表示什么?又表示什么?
(启发:要求1小时行了多少千米,
要先求出小时行了多少千米,然后再求出3个小时行的路程。)
(五)强调“转化”,统一算法
1.对比交流,寻找规律。
教师:从例1中的.
么? 与例2中的中,你发现了什
预设:通过对比,学生能得出:分数除法都可以转化为乘法计算。方法是:除以一个数等于乘这个数的倒数。
教师:例1和例2的计算过程有什么共同之处?
预设:学生通过观察,不难得出:不管哪种情况,都可以归结为“乘除数的倒数”来计算。
教师:小红1
小时能走多少千米?即
计算吗?试一试。 该怎样计算?你能用刚才得出的方法
教师:看看教材中是怎样计算的?为什么可以直接写成“
2.课堂小结,归纳算法。 ”?
教师:通过例1和例2的计算,你能用一句话来概括分数除法的计算方法吗?(学生交流。)
教师:再看看教材中是怎样总结的,和你有什么不同吗?
预设:学生可以初步得出分数除法的计算方法:除以一个数,等于乘这个数的
分数教学设计 15
一、故事引人,揭示课题。
1.教师讲故事。猴山上的猴子最喜欢吃猴王做的饼了。有一天,猴王做了三块大小一样的饼分给小猴们吃,它先把第一块饼平均切成四块,分给猴1一块。猴2见到说:“太少了,我要两块。”猴王就把第二块饼平均切成八块,分给猴2两块。猴3更贪,它抢着说:“我要三块,我要三块。”于是,猴王又把第三块饼平均切成十二块,分给猴3三块。同学们,你知道哪只猴子分得多吗?
讨论:哪只猴子分得的多?让学生发表自己的意见,教师出示三块大小一样的饼,通过师生分饼、观察和验证,得出结论:三只猴子分得的饼一样多。
引导:聪明的猴王是用什么办法来满足小猴子们的要求,又分得那么公平的呢?同学们想知道吗?学习了“分数的基本性质”就清楚了。(板书课题)
[一上课,先听讲一段故事,学生非常乐意,并会立即被吸引。思考故事当中提出的问题,学生自然兴趣浓厚。通过故事设疑,激起了学生探求新知的欲望。]
2.组织讨论。
(1)既然三只猴子分得的饼同样多,那么表示它们分得饼的分数是什么关系呢?这三个分数什么变了,什么没有变?让学生小组讨论后答出:这三个分数是相等关系,1/4=2/8=3/12,它们平均分的份数和表示的.份数也就是分数的分子和分母变化了,但分数的大小不变。
(2)猴王把三块大小一样的饼分给小猴子一部分后,剩下的部分大小相等吗?你还能说出一组相等的分数吗?通过观察演示得出:3/4=6/8=9/12。
(3)我们班有50名同学,分成了五组,每组10人。那么第一、二组学生的人数占全班学生人数的几分之几?引导学生用不同的分数表示,然后得出:1/2=2/4=20/40。
3.引入新课:黑板上三组相等的分数有什么共同的特点?学生回答后板书:
分数的分子和分母变化了, 分数的大小不变。
它们各是按照什么规律变化的呢?我们今天就来共同研究这个变化规律。
3.出示例2:把1/2和10/24化成分母是12而大小不变的分数。
思考:要把1/2和10/24化成分母是12而大小不变的分数,分子怎么不变?变化的依据是什么?
4.讨论:猴王运用什么规律来分饼的?如果小猴子要四块,猴王怎么分才公平呢?如果要五块呢?
[得出性质后,再让学生说出猴王的想法,并回答如果小猴子要四块,猴王怎么办?既前后照应,又让学生在轻松愉快的帮猴王想办法的过程中,运用新知解决实际问题。]
5.质疑:让学生看看课本和板书,回顾刚才学习的过程,提出疑问和见解,师生答疑。
通过举例,沟通分数的基本性质与商不变性质之间的联系。引导学生运用分数与除数的关系,以及整数除法中商不变的性质,说明分数的基本性质。如:3/4=3÷4=(3×3)÷(4×3)=9÷12=9/12
[有助于学生顺利地运用分数与除法的关系,以及整数除法中商不变性质说明分数的基本性质,实现新知化归旧知。]它们各是按照什么规律变化的呢?我们今天就来共同研究这个变化规律。
二、比较归纳,揭示规律。
1.出示思考题。
2.比较每组分数的分子和分母:
(1)从左往右看,是按照什么规律变化的?
(2)从右往左看,又是按照什么规律变化的?
让学生带着上面的思考题,看一看,想一想,议一议,再翻开教科书看看书上是怎么说的。
2.集体讨论,归纳性质。(1)从左往右看,由3/4到6/8,分子、分母是怎么变化的?引导学生回答出:把3/4的分子、分母都乘以2,就得到6/8。原来把单位“1”平均分成4份,表示这样的3份,现在把分的份数和表示份数都扩大2倍,就得到6/8。
板书:
(2)3/4是怎样变化成9/12的呢?怎么填?学生回答后填空。
(3)引导口述:3/4的分子、分母都乘以2,得到6/8,分数的大小不变。
(4)在其它几组分数中,分子、分母的变化规律怎样?几名学生回答后,要求学生试着归纳变化规律:分数的分子和分母都乘以相同的数,分数的大小不变。
(板书:都乘以 相同的数)
(5)从右往左看,分数的分子和分母又是按照什么规律变化的?通过分析比较每组分数的分子和分母,得出:分数的分子和分母都乘以相同的数,分数的大小不变。
(板书:都除以 )
(6)引导思考:都乘以、都除以两个“都”字,去掉一个怎么改?(去掉第二“都”字,换成“或者”)再对照教科书中的分数基本性质,让学生说出少了什么?(少了“零除外”)讨论:为什么性质中要规定“零除外”?
(板书:零除外)
(7)齐读分数的基本性质。先让学生找出性质中关键的字、词,如“都”、“相同的数”、“零除外”等。然后要求关键的字词要重读。师生共同读出黑板上板书的分数基本性质。
[新知识力求让学生主动探索,逐步获取。“猴王分饼”和分析班级学生人数得出的三组相等的分数为学生探索新知提供材料,出示的思考题是学生探求新知、独立思考的指南,教师环紧扣的提问以及引导学生逐步展开的充分的讨论,帮助学生一步步走向结论。]
【分数教学设计 】相关文章:
《真分数与假分数》教学设计10-27
“认识分数”教学设计07-22
《分数除法》教学设计08-20
分数的意义教学设计04-04
分数除以整数教学设计02-09
《分数的初步认识》教学设计09-20
分数的初步认识教学设计08-19
分数乘整数教学设计03-21
《分数基本性质》教学设计08-11